People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lammertink, Rob
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Streamer formation dynamics with mixed bacterial species: effects of cultivation conditions, hydrodynamics, and speciescitations
- 2024Mismatch and mix
- 2022Comparative assessment of hydrocarbon separation performance of bulky poly(urethane-urea)s toward rubbery membranescitations
- 2020Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanescitations
- 2019Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenderscitations
- 2017Fabrication of nanoporous graphene/polymer composite membranescitations
- 2015Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputteringcitations
- 2015Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO2 Filmscitations
- 2011Hollow fiber ultrafiltration membranes with microstructured inner skincitations
- 2011Carbon nanofibers in catalytic membrane microreactorscitations
- 2010Microstructured hollow fibers for ultrafiltrationcitations
- 2010Shrinkage effects during polmer phase separation on microfabricated moldscitations
- 2010Surface texturing inside ceramic macro/micro channelscitations
- 2010Polymeric microsieves via phase separation microfabricationcitations
- 2009Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stampscitations
- 2009Micropatterned polymer films by vapor-induced phase separation using permeable moldscitations
- 2007Morphology and Microtopology of Cation-Exchange Polymers and the Origin of the Overlimiting Currentcitations
- 2006Polymeric microsieves produced by phase separation micromoldingcitations
- 2006Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Stepcitations
- 2005New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porositycitations
- 2005Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly(ferrocenyldimethylsilane) on Goldcitations
Places of action
Organizations | Location | People |
---|
article
Hollow fiber ultrafiltration membranes with microstructured inner skin
Abstract
Hollow fiber membranes with microstructured inner surfaces were fabricated from a PES/PVP blend using a spinneret with a microstructured needle. The effect of spinning parameters such as polymer dope flow rate, bore liquid flowrate, air gap and take-up speed on the microstructure and shape of the bore and its deformation was investigated. It was found that when a high bore liquid flowrate was used, the microstructure in the bore surface was destroyed. The bores were deformed to an oval shape when the fiber walls were thick. This was attributed to buckling of the fiber shell as a result of the coagulation and shrinkage of the outer surface. Fibers were also fabricated with a round-needled spinneret for comparison. The intrinsic pure water permeabilities (based on the actual bore surface areas) of fibers with structured and round bores were found to be similar. On the other hand, the structured fibers have larger pores in the skin layer. Smaller pores on the round fibers are considered to form when the inner surface coagulates and the skin layer is pulled inwards due to the shrinkage caused by phase separation. When the bore is structured, the wavy shape can damp this contraction effect resulting in larger pores. The skin layer thickness of the fibers was investigated using a colloidal filtration method. It was shown that fibers with microstructured bores which have mostly uniform skin layer thickness and reasonably narrow pore size distribution can be fabricated