People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lammertink, Rob
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Streamer formation dynamics with mixed bacterial species: effects of cultivation conditions, hydrodynamics, and speciescitations
- 2024Mismatch and mix
- 2022Comparative assessment of hydrocarbon separation performance of bulky poly(urethane-urea)s toward rubbery membranescitations
- 2020Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanescitations
- 2019Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenderscitations
- 2017Fabrication of nanoporous graphene/polymer composite membranescitations
- 2015Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputteringcitations
- 2015Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO2 Filmscitations
- 2011Hollow fiber ultrafiltration membranes with microstructured inner skincitations
- 2011Carbon nanofibers in catalytic membrane microreactorscitations
- 2010Microstructured hollow fibers for ultrafiltrationcitations
- 2010Shrinkage effects during polmer phase separation on microfabricated moldscitations
- 2010Surface texturing inside ceramic macro/micro channelscitations
- 2010Polymeric microsieves via phase separation microfabricationcitations
- 2009Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stampscitations
- 2009Micropatterned polymer films by vapor-induced phase separation using permeable moldscitations
- 2007Morphology and Microtopology of Cation-Exchange Polymers and the Origin of the Overlimiting Currentcitations
- 2006Polymeric microsieves produced by phase separation micromoldingcitations
- 2006Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Stepcitations
- 2005New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porositycitations
- 2005Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly(ferrocenyldimethylsilane) on Goldcitations
Places of action
Organizations | Location | People |
---|
article
Microstructured hollow fibers for ultrafiltration
Abstract
Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers with maximum 89% surface area enhancement were prepared. The structured fibers and the round fibers spun under the same conditions had comparable (intrinsic) pure water permeability, molecular weight cut-off, pore size distribution and average skin layer thickness. This implies that the flow through the unit volume of the structured fibers will be enhanced compared to their round counterparts, while maintaining the same separation properties. A colloidal filtration method was used to determine the skin layer thickness. Structured fibers spun with a slow-coagulating polymer dope had varying skin thickness throughout the outer surface, which was dependent on the geometry of the fiber and was probably caused by varying local coagulation conditions around the structured outer surface of the fibers. A polymer dope with high coagulation value, on the other hand, resulted in a structured fiber with a homogeneous skin layer all along the surface.