Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jansen, Henricus V.

  • Google
  • 13
  • 24
  • 469

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2013Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline silicon69citations
  • 2010Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabrication9citations
  • 2009Characterization of MEMS-on-tube assembly: reflow bonding of borosilicate glass (Duran ®) tubes to silicon substrates10citations
  • 2008Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithography34citations
  • 2008Monolithics silicon nano-ridge fabrication by edge lithography and wet anisotropic etching of siliconcitations
  • 2007Simple technique for direct patterning of nanowires using a nanoslit shadow-mask2citations
  • 2006Polymeric microsieves produced by phase separation micromolding77citations
  • 2006Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask14citations
  • 2005Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a maskcitations
  • 2003Wet anisotropic etching for fluidic 1d nanochannels92citations
  • 2002Wet anisotropic etching for fluidic 1D nanochannelscitations
  • 2000High resolution powder blast micromachining78citations
  • 2000Mask materials for powder blasting84citations

Places of action

Chart of shared publication
Tas, Niels Roelof
7 / 12 shared
Berenschot, Erwin J. W.
11 / 36 shared
Boer, Meint J. De
2 / 4 shared
Zhao, Yiping
3 / 5 shared
Huskens, Jurriaan
3 / 9 shared
Nogue, Miriam Girones
1 / 1 shared
Bouwes, Dominique
1 / 2 shared
Brake, Hermanus J. M. Ter
1 / 1 shared
Elwenspoek, Michael Curt
7 / 17 shared
Knowles, K. M.
1 / 1 shared
Mogulkoc, B.
1 / 1 shared
Van Den Berg, Albert
1 / 40 shared
Tong, D. H.
1 / 1 shared
Carlen, Edwin
1 / 8 shared
Gadgil, V. J.
1 / 1 shared
Lammertink, Rob
1 / 21 shared
Van Rijn, Cees
1 / 5 shared
Akbarsyah, I. J.
1 / 1 shared
Wessling, Matthias
1 / 35 shared
Nijdam, W.
1 / 4 shared
Gironès, M.
1 / 1 shared
Maury, P. A.
2 / 2 shared
Haneveld, J.
4 / 4 shared
Wensink, H.
2 / 3 shared
Chart of publication period
2013
2010
2009
2008
2007
2006
2005
2003
2002
2000

Co-Authors (by relevance)

  • Tas, Niels Roelof
  • Berenschot, Erwin J. W.
  • Boer, Meint J. De
  • Zhao, Yiping
  • Huskens, Jurriaan
  • Nogue, Miriam Girones
  • Bouwes, Dominique
  • Brake, Hermanus J. M. Ter
  • Elwenspoek, Michael Curt
  • Knowles, K. M.
  • Mogulkoc, B.
  • Van Den Berg, Albert
  • Tong, D. H.
  • Carlen, Edwin
  • Gadgil, V. J.
  • Lammertink, Rob
  • Van Rijn, Cees
  • Akbarsyah, I. J.
  • Wessling, Matthias
  • Nijdam, W.
  • Gironès, M.
  • Maury, P. A.
  • Haneveld, J.
  • Wensink, H.
OrganizationsLocationPeople

article

Polymeric microsieves produced by phase separation micromolding

  • Lammertink, Rob
  • Jansen, Henricus V.
  • Van Rijn, Cees
  • Akbarsyah, I. J.
  • Wessling, Matthias
  • Nijdam, W.
  • Gironès, M.
Abstract

The fabrication of polymeric microsieves with tunable properties (pore size, shape or porosity) is described in this work. Perfectly structured freestanding membranes and accurate replicas of polyethersulfone (PES), copolymers of polyethersulfone and polyethylene oxide (PES–PEO), and blends of PES and hydrophilic additives were produced by phase separation micromolding (PSμM) using a microstructured mold. Phase separation occurred in two stages: vapor-induced phase separation (VIPS), where shrinkage and subsequent perforation of the polymer film took place, and liquid-induced phase separation (LIPS), where lateral shrinkage that facilitated the release of the polymer replica from the mold occurred. The dimensions of the perforations were tuned either by using molds with different pillar diameter or by thermal treatment of the polymer above its glass transition temperature. By the latter method, microsieves with initial pore sizes of about 5 or 2.5 μm were reduced to 1.5 and 0.5 μm, respectively, whereas perforations down to 1.2 μm were achieved by tuning the dimensions of the mold features.

Topics
  • impedance spectroscopy
  • pore
  • phase
  • glass
  • glass
  • glass transition temperature
  • porosity
  • copolymer
  • photoelectron spectroscopy