People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vuorinen, Vesa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (48/48 displayed)
- 2024Novel low-temperature interconnects for 2.5/3D MEMS integration: demonstration and reliabilitycitations
- 2024Low-Temperature Wafer-Level Bonding with Cu-Sn-In Solid Liquid Interdiffusion for Microsystem Packagingcitations
- 2024Electromigration Reliability of Cu3Sn Microbumps for 3D Heterogeneous Integration
- 2024Bonding of ceramics to silver-coated titanium—A combined theoretical and experimental study
- 2024Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnectscitations
- 2024Fatigue Crack Networks in Die-Attach Layers of IGBT Modules Under a Power Cycling Testcitations
- 2023Impact of Inherent Design Limitations for Cu–Sn SLID Microbumps on Its Electromigration Reliability for 3D ICscitations
- 2023Achieving low-temperature wafer level bonding with Cu-Sn-In ternary at 150 °Ccitations
- 2023Co, In, and Co–In alloyed Cu6Sn5 interconnects: Microstructural and mechanical characteristicscitations
- 2023Recent Developments in Low Temperature Wafer Level Metal Bonding for Heterogenous Integrationcitations
- 2022Investigation of the microstructural evolution and detachment of Co in contact with Cu–Sn electroplated silicon chips during solid-liquid interdiffusion bondingcitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding process: Understanding process dependent thermomechanical stresscitations
- 2022Utilizing Co as a contact metallization for wafer-level Cu-Sn-In SLID bonding used in MEMS and MOEMS packagingcitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding processcitations
- 2022Aluminium corrosion in power semiconductor devicescitations
- 2021Wafer Level Solid Liquid Interdiffusion Bondingcitations
- 2021A humidity-induced novel failure mechanism in power semiconductor diodescitations
- 2021Low-temperature Metal Bonding for Optical Device Packagingcitations
- 2019The Role of Ultrafine Crystalline Behavior and Trace Impurities in Copper on Intermetallic Void Formationcitations
- 2018Process Integration and Reliability of Wafer Level SLID Bonding for Poly-Si TSV capped MEMScitations
- 2018The effect of platinum contact metallization on Cu/Sn bondingcitations
- 2018Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bondingcitations
- 2017XRD and ToF-SIMS study of intermetallic void formation in Cu-Sn micro-connectscitations
- 2017Gigahertz scanning acoustic microscopy analysis of voids in Cu-Sn micro-connectscitations
- 2017Key parameters influencing Cu-Sn interfacial void formation
- 2016Optimization of contact metallizations for reliable wafer level Au[sbnd]Sn bondscitations
- 2016Effect of Ni content on the diffusion-controlled growth of the product phases in the Cu(Ni)-Sn systemcitations
- 2016Void formation and its impact on Cu-Sn intermetallic compound formationcitations
- 2016Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride filmscitations
- 2016Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride filmscitations
- 2016Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnectionscitations
- 2014Phase evolution in the AuCu/Sn system by solid-state reactive diffusioncitations
- 2014Void formation in Cu-Sn SLID bonding for MEMScitations
- 2011Diffusion and growth of the µ phase (Ni6Nb7) in the Ni-Nb systemcitations
- 2010Study on the growth of Nb3Sn superconductor in Cu(Sn)/Nb diffusion couple
- 2010Impurity and alloying effects on interfacial reaction layers in Pb-free solderingcitations
- 2009Combined thermodynamic-kinetic analysis of the interfacial reactions between Ni metallization and various lead-free solderscitations
- 2009Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn-Cu intermetallic compound layerscitations
- 2009Determination of diffusion parameters and activation energy of diffusion in V3Si phase with A15 crystal structurecitations
- 2009Understanding materials compatibility issues in electronics packaging
- 2008Formation of Intermetallic Compounds Between Liquid Sn and Various CuNix Metallizationscitations
- 2007Evolution of microstructure and failure mechanism of lead-free solder interconnections in power cycling and thermal shock testscitations
- 2007Solid-state reactions between Cu(Ni) alloys and Sncitations
- 2006Phase formation between lead-free Sn-Ag-Cu solder and Ni(P)/Au finishescitations
- 2006Interfacial reactions between Sn-based solders and common metallisations used in electronics
- 2005Analysis of the redeposition of AuSn4 on Ni/Au contact pads when using SnPbAg, SnAg, and SnAgCu solderscitations
- 2005Interfacial reactions between lead-free solders and common base materialscitations
- 2004Analyses of interfacial reactions at different levels of interconnectioncitations
Places of action
Organizations | Location | People |
---|
article
Low-Temperature Wafer-Level Bonding with Cu-Sn-In Solid Liquid Interdiffusion for Microsystem Packaging
Abstract
Funding Information: The project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826588. The JU receives support from the European Union's Horizon 2020 research and innovation program. The authors acknowledge the provision of facilities as well as technical support by Aalto University at Micronova nanofabrication cleanroom. The authors also would like to acknowledge the facilities of Nanomicroscopy Center for EBSD and FIB characterization. Funding Information: The project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826588 . The JU receives support from the European Union's Horizon 2020 research and innovation program. The authors acknowledge the provision of facilities as well as technical support by Aalto University at Micronova nanofabrication cleanroom. The authors also would like to acknowledge the facilities of Nanomicroscopy Center for EBSD and FIB characterization. Publisher Copyright: © 2024 The Author(s) | openaire: EC/H2020/826588/EU//APPLAUSE ; This work demonstrates the potential use of Cu-Sn-In metallurgy for wafer-level low-temperature solid-liquid interdiffusion (LT-SLID) bonding process for microelectromechanical system (MEMS) packaging. Test structures containing seal-ring shaped SLID bonds were employed to bond silicon and glass wafers at temperatures as low as 170 °C. Scanning acoustic microscopy (SAM) was utilized to inspect the quality of as-bonded wafers. The package hermeticity was characterized by cap-deflection measurements and evaluated through finite element modelling. The results indicate the bonds are hermetic, but residual stresses limit the quantitative analysis of the hermeticity. The microstructural studies confirm the bonds contain a single-phase intermetallic Cu6(Sn,In)5 that remains thermally stable up to 500 °C. This work shows Cu-Sn-In based low-temperature bonding method as a viable packaging option for optical MEMS or other temperature-sensitive components. ; Peer reviewed