Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kruit, Pieter

  • Google
  • 1
  • 4
  • 2

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020‘Cleanroom’ in SEM2citations

Places of action

Chart of shared publication
Hagen, Cornelis Wouter
1 / 7 shared
Birnie, L. D.
1 / 1 shared
Meijden, V. Van Der
1 / 1 shared
Jeevanandam, G.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hagen, Cornelis Wouter
  • Birnie, L. D.
  • Meijden, V. Van Der
  • Jeevanandam, G.
OrganizationsLocationPeople

article

‘Cleanroom’ in SEM

  • Hagen, Cornelis Wouter
  • Birnie, L. D.
  • Meijden, V. Van Der
  • Jeevanandam, G.
  • Kruit, Pieter
Abstract

<p>To allow researchers to fabricate micro- and nano-devices on a small scale, without having to use complex cleanroom facilities, a single tool is proposed in which a variety of typical cleanroom techniques and processes is combined. This ‘cleanroom’ in SEM tool, based on a scanning electron microscope (SEM), integrates several add-on tools, such as a miniature plasma source for sputtering and cleaning purposes, a miniature thermal evaporator for metal deposition, and facilities to enable in-situ selective atomic layer deposition. The cleanroom techniques and processes selected for integration in the ‘cleanroom’ in SEM tool are discussed, and the design and fabrication of the add-on tools are presented. Finally the proofs of principle of the plasma source, evaporator and in-situ selective ALD process are experimentally demonstrated.</p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • atomic layer deposition