People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jones, Thomas David Arthur
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Demonstration of a high-performance continuous casting process for cobalt alloy ASTM F75
- 2022Inkjet printing of high-concentration particle-free platinum inkscitations
- 2021Phase Field & Monte Carlo Potts Simulation of Grain Growth and Morphology of Vertically Upwards Cast Oxygen Free Copper
- 2021Optimising Computational Fluid Dynamic Conditions for Simulating Copper Vertical Castingcitations
- 2020Analysis of throwing power for megasonic assisted electrodeposition of copper inside THVscitations
- 2019A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applicationscitations
- 2019Selective Electroless Copper Deposition by Using Photolithographic Polymer/Ag Nanocompositecitations
- 2019Selective metallisation of 3D printable thermoplastic polyurethanescitations
- 2018Copper electroplating of PCB interconnects using megasonic acoustic streamingcitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018Hybrid Additive Manufacture of Conformal Antennascitations
- 2017Enhanced electrodeposition for the filling of micro-vias
- 2016Megasound Acoustic Surface Treatment Process in the Printed Circuit Board Industrycitations
Places of action
Organizations | Location | People |
---|
article
A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applications
Abstract
Metallization of a polydimethylsiloxane (PDMS)-based substrate is a challenge due to the difficulties in forming crack-free polymer and metal features using standard deposition techniques. Frequently, additional adhesion layers, rigid substrates, multiple processing steps (lift-off and etching) and expensive metal sputtering techniques are required, to achieve such metal patterns. This work presents a novel and rapid technique for the direct metallization of PDMS substrates using photolithography and electroless copper plating. The method has the advantage of not requiring expensive vacuum processing or multiple metallization steps. Electroless copper layer is demonstrated to have a strong adhesion to PDMS substrate with a high conductivity of (3.6 ± 0.7) × 107 S/m, which is close to the bulk copper (5.9 × 107 S/m). The copper-plated PDMS substrate displays mechanical and electrical stability whilst undergoing stretching deformations up to 10% due to applied strain. A functional electronic circuit was fabricated as a demonstration of the mechanical integrity of the copper-plated PDMS after bending.