Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kiang, Kian

  • Google
  • 1
  • 4
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Forming-free resistive switching of tunable ZnO films grown by atomic layer deposition30citations

Places of action

Chart of shared publication
Morgan, Katrina Anne
1 / 14 shared
Huang, Ruomeng
1 / 25 shared
De Groot, Cornelis
1 / 41 shared
Sun, Sun Kai
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Morgan, Katrina Anne
  • Huang, Ruomeng
  • De Groot, Cornelis
  • Sun, Sun Kai
OrganizationsLocationPeople

article

Forming-free resistive switching of tunable ZnO films grown by atomic layer deposition

  • Morgan, Katrina Anne
  • Huang, Ruomeng
  • De Groot, Cornelis
  • Sun, Sun Kai
  • Kiang, Kian
Abstract

Undoped ZnO thin films with tunable electrical properties have been achieved by adjusting the O2 plasma time in the plasma enhanced atomic layer deposition process. The structural, compositional and electrical properties of the deposited ZnO films were investigated by various characterization techniques. By tuning the plasma exposure from 2 to 8 s, both resistivities and carrier concentrations of the resultant ZnO films can be modulated by up to 3 orders of magnitude. Forming-free TiN/ZnO/TiN resistive memory devices have been achieved by choosing the ZnO film with the plasma exposure time of 6 s. This deposition method offers a great potential for producing other un-doped metal oxides with tunable properties as well as complex multilayer structures in a single deposition.

Topics
  • thin film
  • forming
  • tin
  • atomic layer deposition