People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kristensen, Anders
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2022Resonant Laser Printing of Optical Metasurfacescitations
- 2022Resonant Laser Printing of Optical Metasurfacescitations
- 2019Nano structuring of silicone elastomers for optical applications
- 2017Electrospun Polymer Fiber Lasers for Applications in Vapor Sensingcitations
- 2017Electrospun Polymer Fiber Lasers for Applications in Vapor Sensingcitations
- 2016Optical sensors from electrohydrodynamic jetted polymer fiber resonatorscitations
- 2016Optical sensors from electrohydrodynamic jetted polymer fiber resonatorscitations
- 2015Smart plastic functionalization by nanoimprint and injection moldingcitations
- 2015Fiber-Based, Injection-Molded Optofluidic Systems: Improvements in Assembly and Applicationscitations
- 2015Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities
- 2015Fiber-Based, Injection-Molded Optofluidic Systemscitations
- 2014Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milkcitations
- 2014Nanostructuring steel for injection molding toolscitations
- 2012All polymer, injection molded nanoslits, fabricated through two-level UV-LIGA processes
- 2011Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer filmcitations
- 2011Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experimentscitations
- 2011UV Defined Nanoporous Liquid Core Waveguides
- 2011Selective gas sensing for photonic crystal lasers
- 2010Capacitance tuning of nanoscale split-ring resonatorscitations
- 2010UV patterned nanoporous solid-liquid core waveguidescitations
- 2010Nanoimprinted polymer photonic crystal dye laserscitations
- 2010Nanoimprinted polymer photonic crystal dye laserscitations
- 2009Capacitance tuning of nanoscale split-ring resonatorscitations
- 2009Capacitance tuning of nanoscale split-ring resonatorscitations
- 2007Optofluidic tuning of photonic crystal band edge laserscitations
- 2007Combined electron beam and UV lithography in SU-8citations
- 2007Tunability of optofluidic distributed feedback dye laserscitations
- 2007Nanoimprinted reflecting gratings for long-range surface plasmon polaritonscitations
- 2006Optofluidic third order distributed feedback dye lasercitations
- 2006Microfluidic Dye Lasers
- 2005Micro-fabricated solid state dye lasers based on a photo-definable polymercitations
- 2005Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithographycitations
- 2004Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly ultraviolet-transparent and chemically resistant thermoplastcitations
- 2004PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated opticscitations
- 2003Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye lasercitations
- 2002Prediction Of Limit Rotational Speeds In A High-Speed Tool Bason FE Computed J-Integral Intensitiesed
Places of action
Organizations | Location | People |
---|
article
Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk
Abstract
In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved. The enrichment was performed using an all-polymer pinched flow fractionation device fabricated by injection molding. The polymer chips were bonded to a 500 lm polymer foil using UV assisted thermal bonding. The quality of the final devices was reproducible and the injection molding process combined with the use of cheap materials ensures the possibility for device mass production