People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hjort, Martin
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018Self-assembled InN quantum dots on side facets of GaN nanowirescitations
- 2017Crystal Structure Induced Preferential Surface Alloying of Sb on Wurtzite/Zinc Blende GaAs Nanowirescitations
- 2015Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogencitations
- 2015Surface morphology of Au-free grown nanowires after native oxide removal.citations
- 2014III–V Nanowire Surfaces
- 2013Epitaxial growth and surface studies of the Half Heusler compound NiTiSn (001)citations
- 2012Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substratescitations
- 2011Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopycitations
- 2011Doping profile of InP nanowires directly imaged by photoemission electron microscopycitations
Places of action
Organizations | Location | People |
---|
document
Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopy
Abstract
We present a synchrotron-based XPS investigation on the interface between InAs and Al2O3 or HfO2 layers, deposited by ALD at different temperatures, for InAs substrates with different surface orientations as well as for InAs nanowires. We reveal the composition of the native Oxide and how the high-k layer deposition reduces Oxide components. We demonstrate some of the advantages in using synchrotron radiation revealing the variation in Oxide composition as a function of depth into the subsurface region and how we can indentify Oxides even on nanowires covering only a small fraction<br/> of the surface.