People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhao, Liguo
Loughborough University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022In silico evaluation of additively manufactured 316L stainless steel stent in a patient-specific coronary arterycitations
- 2022A comparative study of microstructures and nanomechanical properties of additively manufactured and commercial metallic stentscitations
- 2022Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusioncitations
- 2021Microstructural and mechanical characterization of thin-walled tube manufactured with selective laser melting for stent applicationcitations
- 2020Characterization of biodegradable poly(l‐lactide) tube over accelerated degradationcitations
- 2019Characterisation of additively manufactured metallic stentscitations
- 2019Quantifying the mechanical properties of polymeric tubing and scaffold using atomic force microscopy and nanoindentationcitations
- 2019Mechanical and chemical characterisation of bioresorbable polymeric stent over two-year in vitro degradationcitations
- 20183D DDD modelling of dislocation–precipitate interaction in a nickel-based single crystal superalloy under cyclic deformationcitations
- 2017174 Comparison of the mechanical performance of polymeric and metallic scaffolds – testing and modelling
- 2015Fatigue crack growth in a Nickel-based superalloy at elevated temperature : experimental studies, viscoplasticity modelling and XFEM predictionscitations
- 2015Fatigue crack growth in a nickel-based superalloy at elevated temperature - experimental studies, viscoplasticity modelling and XFEM predictions
- 2011Effects of cyclic stress and temperature on oxidation damage of a nickel-based superalloycitations
Places of action
Organizations | Location | People |
---|
document
In silico evaluation of additively manufactured 316L stainless steel stent in a patient-specific coronary artery
Abstract
Additive manufacturing (AM) is an emerging method for the fabrication of stents, which is cost-saving and capable of producing personalised stent designs. However, poor surface finish and dimension discrepancy in the manufactured stents can significantly affect not only their own mechanical behaviour but also mechanical response of arteries. This study investigates the effects of surface irregularities and dimension discrepancy of a 316L stainless steel stent, manufactured using laser powder bed fusion (LPBF), on its biomechanical performance, in comparison with the original design and a commercial stent. In silico simulations of stent deployment in a patient-specific coronary artery, based on intravital optical coherency tomography imaging, are conducted to assess the stent deformation as well as arterial stress and damage. Severe plastic strain concentrations (with a maximum value of 1.93) occur in the LPBF stent after deployment due to surface irregularities, suggesting a high risk of stent fracture. The LPBF stent is harder to expand due to its thicker struts and closed-cell design (diameter of 4.14 mm at the peak inflating pressure during deployment, compared to 4.58 mm and 4.65 mm for the designed and MULTI-LINK RX ULTRA stents, respectively). Also, the LPBF stent induces a higher level of stress concentration (with a maximum value of 23.04 MPa) to the arterial layers, suggesting a higher risk of tissue damage and in-stent restenosis. This study demonstrates a clear need for further development of the AM process for manufacturing medical implants, especially the surface finish and dimension accuracy.