Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mirhosseini, S.

  • Google
  • 2
  • 3
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Response of 2D and 3D crystal plasticity models subjected to plane strain condition9citations
  • 2022Effect of temperature and heat generation on martensitic phase transformation in DH steels4citations

Places of action

Chart of shared publication
Perdahcıoğlu, E. S.
1 / 5 shared
Van Den Boogaard, Ton
2 / 135 shared
Perdahcioglu, E. S.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Perdahcıoğlu, E. S.
  • Van Den Boogaard, Ton
  • Perdahcioglu, E. S.
OrganizationsLocationPeople

article

Response of 2D and 3D crystal plasticity models subjected to plane strain condition

  • Perdahcıoğlu, E. S.
  • Mirhosseini, S.
  • Van Den Boogaard, Ton
Abstract

<p>The plane strain assumption is generally applied in crystal plasticity finite element (CPFE) simulations in a 2D space to characterize the macroscopic material response considering microstructural features. However, the reliability and accuracy of 2D approximations need to be addressed. In this paper, crystal plasticity finite element simulations of 2D and 3D RVEs are performed with local and averaged plane strain assumptions in Abaqus/Standard. Plane strain postulation is implemented via plane strain elements in 2D and zero average thickness strain in 3D. Irregularly shaped RVEs are generated using the open-source software library Voro++. A conforming mesh is rendered to assign periodic boundary conditions on geometrically periodic RVEs. Periodic boundary condition (PBC) is applied using a prescribed macroscopic deformation gradient tensor. A rate-independent finite strain crystal plasticity model is employed as the user-defined material behavior in finite element simulations. A discrepancy is observed between macroscopic flow curves of 2D and 3D RVEs. The comparison was made for three cases of latent hardening in the crystal plasticity model. In all cases, 3D flow curves exceed 2D results. The results indicate that the deviation is caused by out-of-plane slip activation in 3D simulations, which proves to be an additional hardening source.</p>

Topics
  • impedance spectroscopy
  • simulation
  • activation
  • plasticity
  • crystal plasticity