People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gunputh, Urvashi Fowdar
University of Derby
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Comparing Bio-Ester and Mineral-Oil Emulsions on Tool Wear and Surface Integrity in Finish Turning a Ni-Based Superalloycitations
- 2024Orientation effects on the fracture behaviour of additively manufactured stainless steel 316L subjected to high cyclic fatiguecitations
- 2023Effect of Grain Structure on Machinability of LPBF Inconel 718: A Critical Reviewcitations
- 2023Effect of Powder Bed Fusion Laser Sintering on Dimensional Accuracy and Tensile Properties of Reused Polyamide 11citations
- 2021Selective laser melting of a high precision turbomachinery application in IN718 alloy
- 2021High strain rate effect on tensile ductility and fracture of AM fabricated Inconel 718 with voided microstructurescitations
- 2021High strain rate effect on tensile ductility and fracture of AM fabricated Inconel 718 with voided microstructurescitations
- 2021Analysis of machining performance of Inconel 718 printed by PBF-LM (powder bed fusion laser melting)
- 2020Effect of element wall thickness on the homogeneity and isotropy of hardness in SLM IN718 using nanoindentationcitations
- 2020Effect of powder bed fusion laser melting process parameters, build orientation and strut thickness on porosity, accuracy and tensile properties of an auxetic structure in IN718 alloycitations
- 2020A review of in-situ grown nanocomposite coatings for titanium alloy implantscitations
- 2018Antibacterial Properties of TiO2 Nanotubes coated with nano-ZnO and nano-Ag
- 2018Anodised TiO 2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants.citations
Places of action
Organizations | Location | People |
---|
article
Effect of element wall thickness on the homogeneity and isotropy of hardness in SLM IN718 using nanoindentation
Abstract
In this paper the homogeneity and isotropy of the mechanical hardness of thin-walled Inconel 718 (IN718) alloy samples manufactured by Selective Laser Melting (SLM) were examined using nanoindentation testing. SLM-produced honeycombed samples with wall thicknesses of 0.8, 0.6 and 0.4 mm respectively were studied by measuring the hardness across the wall thickness, and on the planes parallel and perpendicular to the build direction over the range of depths of 10-2000 nm. The average hardness values close to the edges were 4.0-6.5% lower than the areas away from the them. Interestingly the average hardness dropped by 15.2% with reduction in the cell wall thickness from 0.8 mm to 0.4 mm. Average hardness values were reported to be higher on the plane perpendicular to the build direction compared to the parallel plane. A variable material length scale was proposed in this work to describe the size effects of the microstructure. It was evaluated using the nanoindentation hardness test results and a computational model developed in previous studies by the first author and his co-workers.