People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Siddhant
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Inverse Designing Surface Curvatures by Deep Learningcitations
- 2023Neural cellular automata for solidification microstructure modellingcitations
- 2023Neural cellular automata for solidification microstructure modellingcitations
- 2023Inverse-designed growth-based cellular metamaterialscitations
- 2022Conceptual design of foldable truck trailercitations
- 2021What if spiders made metamaterial webs using materials with mechanical size-effects?
- 2020A meshless multiscale approach to modeling severe plastic deformation of metals: Application to ECAE of pure coppercitations
Places of action
Organizations | Location | People |
---|
article
Inverse-designed growth-based cellular metamaterials
Abstract
International audience ; Advancements in machine learning have sparked significant interest in designing mechanical metamaterials, i.e., materials that derive their properties from their inherent microstructure rather than just their constituent material. We propose a data-driven exploration of the design space of growth-based cellular metamaterials based on star-shaped distances. These two-dimensional metamaterials are based on periodically-repeating unit cells consisting of material and void patterns with non-trivial geometries. Machine learning models exploiting large datasets are then employed to inverse design growth-based metamaterials for tailored anisotropic stiffness. Firstly, a forward model is created to bypass the growth and homogenization process and accurately predict the mechanical properties given a finite set of design parameters. Secondly, an inverse model is used to invert the structure–property maps and enable the accurate prediction of designs for a given anisotropic stiffness query. We successfully demonstrate the frameworks’ generalization capabilities by inverse designing for stiffness properties chosen from outside the domain of the design space.