Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ryan, Helen

  • Google
  • 1
  • 1
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Development of a new approach for corrosion-fatigue analysis of offshore steel structures15citations

Places of action

Chart of shared publication
Mehmanparast, Ali
1 / 79 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mehmanparast, Ali
OrganizationsLocationPeople

article

Development of a new approach for corrosion-fatigue analysis of offshore steel structures

  • Ryan, Helen
  • Mehmanparast, Ali
Abstract

Corrosion-fatigue is known to be the dominant failure mechanism in offshore structures, such as offshore wind turbines, due to the constant exertion of cyclic loads in highly corrosive environments. In the present study, the existing corrosion-fatigue crack growth (CFCG) theories and models have been firstly reviewed and discussed, and subsequently a new approach has been proposed to accurately describe the corrosion-fatigue behaviour under various loading conditions and frequencies. To examine the validity of the proposed approach, fatigue crack growth experiments were conducted on S355G10+M medium strength steel compact tension, C(T), specimens at different load levels and frequencies. The experimental data were initially analysed using the traditional fracture mechanics parameter ΔK which was shown to have limitations at elucidating the effects of frequency on CFCG rates in the range of 0.2-0.5 Hz. Therefore, a new fracture mechanics parameter was developed that allows these effects to be seen and accounted for more clearly. Furthermore, a new CFCG model was developed, using the introduced fracture mechanics parameter, for predicting the crack growth rates in seawater from the short-term test data in air. The proposed model has been found to correlate well with experimental data from corrosion-fatigue experiments on S355G10+M from this study and S355J2+N structural steel data available in the literature.

Topics
  • impedance spectroscopy
  • corrosion
  • experiment
  • crack
  • strength
  • fatigue
  • structural steel