People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Escalera, F. Martin De La
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A continuum damage model for composite laminates
Abstract
<p>This paper follows on from part III (Llobet et al., 2020) where a mesoscale continuum damage mechanics (CDM) model for composite laminates under static and fatigue loads has been presented. An experimental investigation on the damage occurrence and the strength of carbon/epoxy notched laminates subjected to static, tension-tension fatigue and residual strength tests is provided. X-ray inspections reveal that matrix cracking, longitudinal splitting and delamination control the fatigue degradation process. This paper presents a coupled computational model to account for intralaminar damage using the CDM model and interlaminar damage using a cohesive zone model (CZM). The capability of the computational model to capture the main fatigue degradation mechanisms and the residual strength is examined by simulating open-hole and double-edge notched specimens. The numerical predictions show that the main fatigue degradation mechanisms are well captured as well as the post-fatigue residual strengths except for the open-hole specimen. Further experimental and modelling work are required to develop a more reliable computational tool for quantitative evaluation of fatigue and damage tolerance of composite structures.</p>