People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czibula, Caterina
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Functionalizing Surfaces by Physical Vapor Deposition To Measure the Degree of Nanoscale Contact Using FRET
- 2022The effect of the strain rate on the longitudinal modulus of cellulosic fibrescitations
- 2022Nanoindentation for Fast Investigation of PET Film Degradationcitations
- 2022Surmounting the thermal processing limitscitations
- 2021A compressible plasticity model for pulp fibers under transverse loadcitations
- 2021Morphological characterization of semi-crystalline POM using nanoindentationcitations
- 2021Comprehensive investigation of the viscoelastic properties of PMMA by nanoindentationcitations
- 2019Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Compositioncitations
- 2016Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films.citations
Places of action
Organizations | Location | People |
---|
article
A compressible plasticity model for pulp fibers under transverse load
Abstract
In the progress of understanding the mechanical behavior of pulp fibers, advanced material models have to be developed alongside experimental investigations. The transverse behavior of pulp fibers is tested by atomic force microscopy (AFM)-based nanoindentation experiments to record both, the volume reduction and the force-displacement curve. Our measurements clearly indicate a compressible plastic behavior in conjunction with a highly nonlinear elastic behavior, both which are attributed to the nanoporous structure of pulp fibers. We therefore advocate a numerical model based on a compressible plastic model combined with a hyper-foam model. Our evaluation yields three key findings for the transverse behavior of pulp fibers: first, the compression behavior is dominated by plastic deformation and nonlinear elasticity, in agreement with the experimental indentation results; second, we found evidence that a compressible plasticity model is justified, with an estimated Poisson's ratio of 0.23; and third, a good agreement of our numerical model with out-of-plane compaction experiments from the literature for a sheet of paper was achieved.