Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

El-Naaman, Salim Abdallah

  • Google
  • 5
  • 2
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019An investigation of back stress formulations under cyclic loading26citations
  • 2016Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory3citations
  • 2016On modeling micro-structural evolution using a higher order strain gradient continuum theory19citations
  • 2015Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolutioncitations
  • 2013Observations on Mode I ductile tearing in sheet metals32citations

Places of action

Chart of shared publication
Niordson, Christian Frithiof
4 / 52 shared
Nielsen, Kl
5 / 42 shared
Chart of publication period
2019
2016
2015
2013

Co-Authors (by relevance)

  • Niordson, Christian Frithiof
  • Nielsen, Kl
OrganizationsLocationPeople

article

An investigation of back stress formulations under cyclic loading

  • El-Naaman, Salim Abdallah
  • Niordson, Christian Frithiof
  • Nielsen, Kl
Abstract

A single material length parameter governs both the material size dependence and the predicted micro-structural behavior in most existing micro-structurally based continuum theories. As a consequence, smoothly varying field quantities are predicted which contrast recent years' experimental observations. In a previous work by the authors, addressing this matter, two new back stress formulations were proposed, and demonstrated to offer novel modeling capabilities in the localization behavior of geometrically necessary dislocation pile-up under monotonic loading. However, the cyclic behavior of these formulations remains to be investigated. The present work studies the new back stress formulations, within a non-work conjugate type higher order strain gradient crystal plasticity framework, and demonstrates their performance through the idealized single slip simple shear case. At high values of the material length scale parameter, a seemingly anomalous cyclic response is observed when deviating from the conventional type back stress formulation. Similar observations have recently been reported in other numerical studies, and the present work offers a discussion of the physical justification of such material behavior. It is found that the properties of the adopted formulations, in fact, open the possibility for modeling complex material behavior, tied to the presence of long range internal stresses due to dislocation pile-up. Moreover, the present study extends the discussion on micro-structure predictions as a consequence of the adopted back stress models.

Topics
  • impedance spectroscopy
  • dislocation
  • plasticity
  • crystal plasticity