People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borrega, Marc
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Evaluation of chemical additives in hydrothermal pre-treatment of wood for the integrated production of monosugars and hydrolysis lignins for PLA-based biocompositescitations
- 2022Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fiberscitations
- 2022Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fiberscitations
- 2022Valorization of Industrial Spruce Bark by Alkaline Extraction
- 2020Morphological and Wettability Properties of Thin Coating Films Produced from Technical Ligninscitations
- 2016Wood biorefinery based on γ-valerolactone/water fractionationcitations
- 2015Composition and structure of balsa (Ochroma pyramidale) woodcitations
- 2015Mechanics of balsa (Ochroma pyramidale) woodcitations
- 2011Radial mechanical properties of high-temperature dried Norway spruce (Picea abies) woodcitations
- 2011Cell wall porosity in norway spruce wood as affected by high-temperature drying
- 2010Three mechanisms affecting the mechanical properties of spruce wood dried at high temperaturescitations
- 2008Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) woodcitations
Places of action
Organizations | Location | People |
---|
article
Mechanics of balsa (Ochroma pyramidale) wood
Abstract
Balsa wood is one of the preferred core materials in structural sandwich panels, in applications ranging from wind turbine blades to boats and aircraft. Here, we investigate the mechanical behavior of balsa as a function of density, which varies from roughly 60 to 380 kg/m 3 . In axial compression, bending, and torsion, the elastic modulus and strength increase linearly with density while in radial compression, the modulus and strength vary nonlinearly. Models relating the mechanical properties to the cellular structure and to the density, based on deformation and failure mechanisms, are described. Finally, wood cell-wall properties are determined by extrapolating the mechanical data for balsa, and are compared with the reduced modulus and hardness of the cell wall measured by nanoindentation.