Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Largenton, Rodrigue

  • Google
  • 11
  • 18
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024High frequency acoustic microscopy imaging of pellet cladding interface in nuclear fuel rodscitations
  • 2024High frequency acoustic microscopy imaging of pellet cladding interface in nuclear fuel rodscitations
  • 2022Proximity Effects in Matrix-Inclusion Composites: Elastic Effective Behavior, Phase Moments, and Full-Field Computational Analysis3citations
  • 2022Multiscale modelling of polycrystalline UO2: full-field simulations (FFT) and model-reduction approach (NTFA)citations
  • 2022Efficiency of boundary conditions on the computation of local fields in a Representative Volume Elementcitations
  • 2022Multiscale modelling of polycrystalline UO2: full-field simulations (FFT) and model reduction technique (NTFA)citations
  • 2014Extension of the Nonuniform Transformation Field Analysis to linear viscoelastic composites in the presence of aging and swelling39citations
  • 2013Comportement d'un composite visco-élastique linéaire vieillissant avec déformation libre : réduction par la méthode NTFAcitations
  • 2012Plastic strain heterogeneity in MOX nuclear fuel (composite material) and the Nonuniform Transformation Field Analysis.citations
  • 2012Plastic strain heterogeneity in composite materials and the nonuniform transformation field analysiscitations
  • 2012Modélisation du comportement effectif du combustible MOX par une analyse micro-mécanique en champs de transformation non uniformescitations

Places of action

Chart of shared publication
Audic, Karine
2 / 2 shared
Lacroix, Brigitte
2 / 2 shared
Despaux, Gilles
2 / 6 shared
Le Clézio, Emmanuel
1 / 2 shared
Laux, Didier
2 / 8 shared
Federici, Eric
2 / 2 shared
Saikouk, Hajar
2 / 2 shared
Clézio, Emmanuel Le
1 / 1 shared
Ramière, Isabelle
1 / 2 shared
Lebon, Frédéric
2 / 20 shared
Belgrand, Louis
2 / 2 shared
Michel, Bruno
2 / 6 shared
Labat, Julien
2 / 2 shared
Michel, Jean-Claude
6 / 8 shared
Ramière, I.
1 / 1 shared
Suquet, Pierre
4 / 10 shared
Thouvenin, Gilles
1 / 1 shared
Masson, Renaud
1 / 13 shared
Chart of publication period
2024
2022
2014
2013
2012

Co-Authors (by relevance)

  • Audic, Karine
  • Lacroix, Brigitte
  • Despaux, Gilles
  • Le Clézio, Emmanuel
  • Laux, Didier
  • Federici, Eric
  • Saikouk, Hajar
  • Clézio, Emmanuel Le
  • Ramière, Isabelle
  • Lebon, Frédéric
  • Belgrand, Louis
  • Michel, Bruno
  • Labat, Julien
  • Michel, Jean-Claude
  • Ramière, I.
  • Suquet, Pierre
  • Thouvenin, Gilles
  • Masson, Renaud
OrganizationsLocationPeople

article

Extension of the Nonuniform Transformation Field Analysis to linear viscoelastic composites in the presence of aging and swelling

  • Largenton, Rodrigue
  • Suquet, Pierre
  • Michel, Jean-Claude
Abstract

This study presents a micromechanical modeling by the Nonuniform Transformation Field Analysis (NTFA) of the viscoelastic properties of heterogeneous materials with aging and swelling constituents. The NTFA proposed by Michel and Suquet (2003, 2004) is a compromise between analytical models and full-field simulations. Analytical models, which are available only for specific microstructures, provide effective constitutive relations which can be used in macroscopic structural computations, but often fail to deliver sufficiently detailed information at small scale. At the other extreme, full-field simulations provide detailed local fields, in addition to the composite effective response, but come at a high cost when used in nested Finite Element Methods. The NTFA method is a technique of model reduction which achieves a compromise between both approaches. It is based on the observation that the transformation strains (viscous strains, eigenstrains) often exhibit specific patterns called NTFA modes. It delivers both effective constitutive relations and localization rules which allow for the reconstruction of local fields upon post-processing of macroscopic quantities. A prototype of the materials of interest here is MOX (mixed oxides), a nuclear fuel which is a three-phase particulate composite material with two inclusion phases dispersed in a contiguous matrix. Under irradiation, its individual constituents, which can be considered as linear viscoelastic, are subject to creep, to aging (time dependent material properties) and to swelling (inhomogeneous eigenstrains). Its overall behavior is therefore the result of the combination of complex and coupled phenomena. The NTFA is applied here in a three-dimensional setting and extended to account for inhomogeneous eigenstrains in the individual phases. In the present context of linear viscoelasticity the modes can be identified following two procedures, either in each individual constituent, as initially proposed in Michel and Suquet (2003, 2004), or globally on the volume element, resulting into two slightly different models. For non aging materials, the predictions of both models are in excellent agreement with full-field simulations for various loading conditions, monotonic as well as non proportional loading, creep and relaxation. The model with global modes turns out to be as predictive as the original one with less internal variables. For aging materials, satisfactory results for the overall as well as for the local response of the composites are obtained by both models at the expense of enriching the set of modes. The prediction of the global model for the local fields is less accurate but remains acceptable. Use of the global NTFA model is therefore recommended for linear viscoelastic composites.

Topics
  • impedance spectroscopy
  • microstructure
  • inclusion
  • phase
  • simulation
  • laser emission spectroscopy
  • composite
  • viscoelasticity
  • aging
  • creep
  • aging