Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oyehan, Tajudeen Adeyinka

  • Google
  • 2
  • 5
  • 115

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Predicting the compressive strength of a quaternary blend concrete using Bayesian regularized neural network31citations
  • 2020Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concrete84citations

Places of action

Chart of shared publication
Salami, Babatunde Abiodun
2 / 25 shared
Imam, Ashhad
1 / 1 shared
Rahman, Syed Masiur
1 / 2 shared
Dulaijan, Salah U. Al
1 / 1 shared
Maslehuddin, Mohammed
1 / 9 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Salami, Babatunde Abiodun
  • Imam, Ashhad
  • Rahman, Syed Masiur
  • Dulaijan, Salah U. Al
  • Maslehuddin, Mohammed
OrganizationsLocationPeople

article

Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concrete

  • Salami, Babatunde Abiodun
  • Rahman, Syed Masiur
  • Oyehan, Tajudeen Adeyinka
  • Dulaijan, Salah U. Al
  • Maslehuddin, Mohammed
Abstract

<p>Corrosion initiation time of embedded steel is an important service life parameter, which depends on concrete material make-up, exposure environment, and duration of exposure. Early and accurate determination of corrosion initiation time will aid in designing durable reinforced concrete, saves cost and time. This study leveraged on the power of ensemble machine learning by combining the performances of different models in estimating the corrosion initiation time of steel embedded in self compacted concrete using corrosion potential measurement. The concrete specimens were prepared with limestone powder as supplementary addition to Portland cement and was exposed to 5% sodium chloride in accordance with the requirements of ASTM C876 – 15 for 8 months. During the exposure, corrosion potential of the embedded steel was measured, and the recorded datasets were used in training five different machine learning models. With cement, limestone powder, coarse aggregate, fine aggregate, water and exposure period.as input variables, five different models were developed to estimate the corrosion initiation time (determined from the corrosion potential measurements) of the embedded steel. With respect to model predictive performance, the acquired results demonstrated that the random forest (RF) ensemble model amongst other trained models performed best with 85/15 dataset percentage split for the training and testing. RF ensemble performed best with CC and RMSE of 99.01% and 18.2747 mV for training, and 98.67% and 25.0298 mV for testing respectively. Hence, due to its superior and robust performance, this study proposes RF ensemble model in the estimation of corrosion initiation time of embedded steel in reinforced limestone-cement blend concrete.</p>

Topics
  • impedance spectroscopy
  • corrosion
  • steel
  • Sodium
  • cement
  • random
  • machine learning