People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goldberg, Moshe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2018A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical componentscitations
- 2018Characterizing the effect of cutting condition, tool path, and heat treatment on cutting forces of selective laser melting spherical component in five-axis millingcitations
- 2017Production of Ti-6Al-4V acetabular shell using selective laser meltingcitations
- 2017On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4Vcitations
- 2016An improved static model for tool deflection in machining of Ti–6Al–4V acetabular shell produced by selective laser meltingcitations
- 2016A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cupcitations
Places of action
Organizations | Location | People |
---|
article
An improved static model for tool deflection in machining of Ti–6Al–4V acetabular shell produced by selective laser melting
Abstract
<p>Tool deflection during milling operation leads to dimensional error, decreasing surface quality and increasing rejection rate. In this study, tool deflection during the milling of the inner surfaces of Ti–6Al–4V prosthetic acetabular shell produced by selective laser melting (SLM) was modelled. The first purpose of this research is to provide a general static cutting tool deflection model for ball nose cutters where deviation of machine components and tool holder are so small as to be considered negligible. This is because the values of machine component and tool holder deflection were lower than standard tolerances (10 μm) and found to be lower than 1/15 of tool deflection. The second and third objectives of this work involve calculating contact surfaces by determining workpiece and tool geometry and choosing second moment of inertia using a novel cross section method (CSM). Static models for three quasi-analytical methods (QAM) that are simple cantilever beam model (SCBM), two-section model (TWSM) and our three section model (THSM) are presented. THSM showed high accuracy which was validated by 3D finite element method (FEM3D) and experimental measurements. The accuracy of tool deflection calculation using THSM by computing, shank, flute and ball head deflection and also utilizing CSM to determine second moment of inertia showed notable improvements.</p>