People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brocks, Geert H. L. A.
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Probing the Reactivity of ZnO with Perovskite Precursorscitations
- 2024Temperature-Dependent Chirality in Halide Perovskitescitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductorscitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskitescitations
- 2022Decomposition of Organic Perovskite Precursors on MoO3citations
- 2019Absolute energy level positions in tin- and lead-based halide perovskitescitations
- 2013Crystalline CoFeB/graphite interfaces for carbon spintronics fabricated by solid phase epitaxycitations
- 2013Magnetic Properties of bcc-Fe(001)/C60 Interfaces for Organic Spintronicscitations
Places of action
Organizations | Location | People |
---|
article
The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductors
Abstract
CuI has been the best-known p-type transparent conductor (TC) for years, yet its conductivity still lags behind n-type TCs. Herein, we demonstrate S-doped CuI films via pulsed laser deposition and provide an in-depth defect analysis to describe its enhanced conductivity. Combining compositional and optoelectronic characterizations of the films, we show that 3 atom % S incorporation in CuI leads to an increase in hole carrier density from ∼8 × 1019 to ∼9 × 1020 cm−3, resulting in a conductivity boost from 78 to 435 S cm−1 while maintaining >75% transparency in the visible spectrum. The increase in carrier density is linked to the formation of a CuxS amorphous phase at grain boundaries and copper-vacancy-rich phases intragrain, the latter suggested by defect calculations. The high conductivities of the S:CuI films validate the recently reported high figure of merit and motivate further exploration of dopants and alloy strategies with CuI to achieve high-performing p-type TCs.