People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lucas, Sandra S.
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 20243D printing lightweight mortars with cork to improve thermal efficiency in buildingscitations
- 20243D printing lightweight mortars with cork to improve thermal efficiency in buildingscitations
- 2024Combined analytical and numerical modelling of the electrical conductivity of 3D printed carbon nanotube-cementitious nanocompositescitations
- 20243D printable one-part alkali-activated mortar derived from brick masonry wastescitations
- 2023Promoting the use of Fe-rich slag in construction: Development of a hybrid binder for 3D printingcitations
- 20233D printing of an iron-rich slag based hybrid mortarcitations
- 2022Mechanical properties and self-sensing ability of graphene-mortar compositions with different water content for 3D printing applicationscitations
- 2021Juxtaposing fresh material characterisation methods for buildability assessment of 3D printable cementitious mortarscitations
- 2021Juxtaposing fresh material characterisation methods for buildability assessment of 3D printable cementitious mortarscitations
- 2013Latent heat storage in PCM containing mortars : study of microstructural modifications
Places of action
Organizations | Location | People |
---|
article
Mechanical properties and self-sensing ability of graphene-mortar compositions with different water content for 3D printing applications
Abstract
There is an increasing ongoing research on concrete compositions with enhanced properties such as self sensing given by the use of carbon nanomaterials. Carbon nanotubes-cement composites have been studied for over a decade to produce smart materials, with interesting results. However, since first synthetized in 2004, Graphene is rapidly growing in popularity due to similar conductive properties, high stiffness and strength, lower environmental impact and ease of production and lower production prices. More recent studies have tried to incorporate this material into concrete compositions with positive results. On the other hand, the construction industry is moving towards more automated production processes and new technologies such as 3D printing concrete are gaining popularity. However, there is little research on the effects of nanomaterials in 3D printable concrete compositions. In this paper, the effects of Graphene nanoplatelets (GnPs) on a the mechanical properties and conductivity of a printable mortar are investigated. Five different compositions with different water content and graphene content were prepared to create cast and printed samples with dimensions 40x40x160 mm 3 that were tested to evaluate the mechanical strength and the resistivity change between unloaded and loaded to failure conditions. A linear regression model using Matlab was created to have an overview on the strength and resistivity change depending on the water-cement ratio (w/c) and Graphene nanoplatelet content (GnP). The results showed that in cast samples, GnPs improve the compressive strength and the self sensing ability of the material, while in printed samples, GnPs has a detrimental effect on the compressive strength and the self sensing ability depends heavily on the printed layers direction. Future studies should concentrate on the effect of interlayer adhesion on the self sensing and mechanical properties, and on the additives necessary to improve the printability of GnP-mortar compositions.