Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramli, Mohd Khairul Naim

  • Google
  • 1
  • 5
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Modification of zeolitic imidazolate framework-8 with amine groups for improved antibacterial activity9citations

Places of action

Chart of shared publication
Malek, Nik Ahmad Nizam Nik
1 / 9 shared
Nordin, Nik Abdul Hadi Md
1 / 1 shared
Ismail, Ahmad Fauzi
1 / 15 shared
Ahmad, Nazerah
1 / 3 shared
Jaafar, Juhana
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Malek, Nik Ahmad Nizam Nik
  • Nordin, Nik Abdul Hadi Md
  • Ismail, Ahmad Fauzi
  • Ahmad, Nazerah
  • Jaafar, Juhana
OrganizationsLocationPeople

article

Modification of zeolitic imidazolate framework-8 with amine groups for improved antibacterial activity

  • Malek, Nik Ahmad Nizam Nik
  • Nordin, Nik Abdul Hadi Md
  • Ramli, Mohd Khairul Naim
  • Ismail, Ahmad Fauzi
  • Ahmad, Nazerah
  • Jaafar, Juhana
Abstract

he exploration of the metal–organic framework (MOFs) as a promising alternative for disinfection applications has not yet widely recognized. The flexibility of its structural diversity and large surface area with large pore size allows guest molecules to be stored and their ability to release metal ions has provided great prospect to generate high potent antibacterial activity for environmental applications. In this study, a rapid and straightforward post modification method for zeolitic imidazole framework 8 (ZIF-8) was developed through amine groups' introduction using ammonium hydroxide solution with improved antibacterial properties. The effect of different volume of ammonium hydroxide loadings towards ZIF-8 properties and its antibacterial activity was carefully examined. The result of Fourier transform infrared spectroscopy (FTIR) showed a successful modification of ZIF-8 with amine due to the presence of the N–H group; however, a significant decrease was observed in the BET surface area. The samples' antibacterial potency was tested against Escherichia coli ATCC 11229 and Staphylococcus aureus ATCC 6538 as Gram-negative and positive bacteria type strains, using disc diffusion (DDT) and minimum inhibitory concentration (MIC) testing, respectively. ZNH 20 was found to have the most potent antibacterial efficacy, with the MIC value needed to prevent bacterial growth two times lower than that of unmodified ZIF-8. The presence of positively charged amine groups promotes electrostatic adsorption of negatively charged membrane bacteria cells, which substantially enhanced the antibacterial activity of the modified sample. The synergistic effects of amine groups as well as zinc metal (Zn2+) in the modified ZIF-8 increased the antibacterial activity of the material and thus, making it suitable as antibacterial agents for water purification and biomedical applications.

Topics
  • pore
  • surface
  • zinc
  • amine
  • Fourier transform infrared spectroscopy