People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Anbalagan, Arivazhagan
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applicationscitations
- 2023Investigation on CFRP 3D printing build parameters and their effect on topologically optimised complex modelscitations
- 2023Processing and characterization of aluminium alloy 6061 graphene composite printed by direct metal laser sinteringcitations
- 2023Novel Machining Configuration of Carbon Fibre Reinforced Polymer (CFRP) Using Wire Electric Discharge Machining (WEDM)citations
- 2023Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applications.citations
- 2021A FEA simulation study of ball end mill for fixed 3+1 / 3+2 axis machining of Ti-6Al-4Vcitations
- 2021A FEA simulation study of ball end mill for fixed 3+1 / 3+2 axis machining of Ti-6Al-4V.citations
Places of action
Organizations | Location | People |
---|
article
A FEA simulation study of ball end mill for fixed 3+1 / 3+2 axis machining of Ti-6Al-4V
Abstract
<p>This paper presents a Finite Element Analysis (FEA) simulation study conducted on ball endmill for fixed 3 + 1 and 3 + 2 axis orientations for machining Ti-6Al-4 V. This work adopts a tungsten carbide (WC) ∅18.6 mm diametrical/6fluted ball endmill to analyse maximum principal elastic strain (ϵ<sub>max-max-principal-elastic</sub>), maximum principal stress (σ<sub>max-principal)</sub>along with cutting tools forces in the axial (F<sub>z</sub>), radial (F<sub>y</sub>), tangential (F<sub>x</sub>) and total (F<sub>total</sub>) directions. The machining orientations considered for 3 + 1 and 3 + 2 axis are (i) tilt angles of 5°, 10°, 15° & 20° and (ii) lead angles of 5°, 10° & 15° with a constant fixed tilt angle of 10°. The cutting speed and feed rate per tooth is taken as 450 m/min and 0.5 mm/tooth. These are based on a high speed machining (HSM) scenario and has been dynamically simulated for a maximum of 175,000 cycles. From the simulation study considered at 16-20 valid cutting points, it can be noticed that in 3 + 1 axis, for a tilt angle of 10° and 3 + 2 axis for a Tilt 10°/Lead 10° the σ<sub>max-principal</sub>and ϵ<sub>max-max-principal-elastic</sub>are higher when compared with all tilt/lead angles. In case of total forces (F<sub>total</sub>) from all 3 directions (F<sub>x</sub>, F<sub>y</sub>and F<sub>z</sub>) not much variation can be noticed for different tilt/lead angles, but higher values are recorded with 3 + 1 axis at 5° tilt angle and 3 + 2 axis at tilt/lead angle of 10°. The paper provides a critical comparative study on the 3 + 1/ 3 + 2 axis orientations highlighting the cutting strain/stress with tool forces at valid cutting points considering entry, middle and exit region of the blank by emphasizing the importance of cutting tool design parameters.</p>