Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zybała, Rafał

  • Google
  • 9
  • 37
  • 139

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Mg nanostructures with controlled dominant c-plane or m-plane facets by DC magnetron sputter deposition1citations
  • 2024Using SPS Sintering System in Fabrication of Advanced Semiconductor Materialscitations
  • 2023Microstructural Evolution of Ni-SiC Composites Manufactured by Spark Plasma Sintering6citations
  • 2021Review of rapid fabrication methods of skutterudite materials12citations
  • 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sintering17citations
  • 2018Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquid5citations
  • 2017Effect of metallic coating on the properties of copper-silicon carbide composites27citations
  • 2017Synthesis and characterization of antimony telluride for thermoelectric And optoelectronic applications45citations
  • 2017Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering Technique26citations

Places of action

Chart of shared publication
Zawadzki, Jakub
1 / 1 shared
Wzorek, Marek
1 / 4 shared
Wójcicka, Aleksandra
1 / 1 shared
Barańczyk, Patrycja
1 / 1 shared
Borysiewicz, Michał A.
1 / 3 shared
Kaszyca, Kamil
3 / 5 shared
Nisar, Fatima
1 / 1 shared
Bucholc, Bartosz
1 / 3 shared
Błyskun, Piotr
1 / 11 shared
Rojek, Jerzy
1 / 1 shared
Chmielewski, Marcin
5 / 17 shared
Piątkowska, Anna
1 / 3 shared
Bazarnik, Piotr
3 / 49 shared
Jagiełło, Jakub
1 / 1 shared
Strojny-Nędza, Agata
3 / 7 shared
Nosewicz, Szymon
3 / 10 shared
Dobrowolski, Artur
1 / 1 shared
Diduszko, Ryszard
1 / 7 shared
Kruszewski, Mirosław Jakub
1 / 1 shared
Ciupiński, Łukasz
4 / 19 shared
Zdunek, Joanna
1 / 34 shared
Kurzydłowski, Krzysztof
1 / 114 shared
Kruszewski, Mirosław
2 / 16 shared
Michalski, Andrzej
1 / 13 shared
Dąbrowski, Franciszek
1 / 2 shared
Grzonka, Justyna
1 / 8 shared
Schmidt, Maksymilian
2 / 2 shared
Kamińska, Paulina
1 / 1 shared
Pietrzak, Katarzyna
4 / 8 shared
Jarząbek, Dariusz
1 / 19 shared
Lewandowska, Małgorzata
2 / 89 shared
Teodorczyk, Marian
1 / 2 shared
Mikuła, Andrzej
1 / 3 shared
Bogusławski, Jakub
1 / 1 shared
Soboń, Grzegorz
1 / 1 shared
Mars, Krzysztof
1 / 4 shared
Sotor, Jarosław
1 / 1 shared
Chart of publication period
2024
2023
2021
2019
2018
2017

Co-Authors (by relevance)

  • Zawadzki, Jakub
  • Wzorek, Marek
  • Wójcicka, Aleksandra
  • Barańczyk, Patrycja
  • Borysiewicz, Michał A.
  • Kaszyca, Kamil
  • Nisar, Fatima
  • Bucholc, Bartosz
  • Błyskun, Piotr
  • Rojek, Jerzy
  • Chmielewski, Marcin
  • Piątkowska, Anna
  • Bazarnik, Piotr
  • Jagiełło, Jakub
  • Strojny-Nędza, Agata
  • Nosewicz, Szymon
  • Dobrowolski, Artur
  • Diduszko, Ryszard
  • Kruszewski, Mirosław Jakub
  • Ciupiński, Łukasz
  • Zdunek, Joanna
  • Kurzydłowski, Krzysztof
  • Kruszewski, Mirosław
  • Michalski, Andrzej
  • Dąbrowski, Franciszek
  • Grzonka, Justyna
  • Schmidt, Maksymilian
  • Kamińska, Paulina
  • Pietrzak, Katarzyna
  • Jarząbek, Dariusz
  • Lewandowska, Małgorzata
  • Teodorczyk, Marian
  • Mikuła, Andrzej
  • Bogusławski, Jakub
  • Soboń, Grzegorz
  • Mars, Krzysztof
  • Sotor, Jarosław
OrganizationsLocationPeople

document

Review of rapid fabrication methods of skutterudite materials

  • Kruszewski, Mirosław Jakub
  • Zybała, Rafał
  • Ciupiński, Łukasz
Abstract

Skutterudites are highly promising thermoelectric materials for mid-temperature range (400–850 K) applications because they exhibit one of the highest efficiencies of energy conversion at this temperature. It is well proven that skutterudite-based thermoelectric materials can be successfully synthesized using a combination of processing techniques that generally consist of two stages as follows: a) synthesis of the alloy (e.g., melting-quenching/annealing-grounding, and solid-state reaction) and b) final consolidation via various powder metallurgy techniques (e.g., hot pressing, spark plasma sintering, and pulse plasma sintering). The aforementioned fabrication processes are time- and energy-consuming due to their complex and multi-stage nature. The aim of the present study is to review recent rapid fabrication methods of skutterudite thermoelectric materials. Advantages and disadvantages of selected fabrication routes including gas atomization, selective laser melting, self-propagating high-temperature synthesis, melt-spinning, and hydrothermal synthesis were discussed and compared to those of conventional synthesis of skutterudite alloys. All the presented fabrication routes offer significant potential for large-scale scalability owing to their time and energy efficiencies that enable fast, low cost, and mass production of thermoelectric materials.

Topics
  • impedance spectroscopy
  • melt
  • selective laser melting
  • annealing
  • atomization
  • sintering
  • quenching
  • hot pressing
  • spinning