People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trager-Cowan, Carol
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2022Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope
- 2022Crystalline grain engineered CsPbIBr 2 films for indoor photovoltaicscitations
- 2022Crystalline grain engineered CsPbIBr2 films for indoor photovoltaicscitations
- 2020Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscopecitations
- 2020Nanomechanical behaviour of individual phases in WC-Co cemented carbides, from ambient to high temperaturecitations
- 2020Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (112ˉ0) GaN
- 2020Metrology of crystal defects through intensity variations in secondary electrons from the diffraction of primary electrons in a scanning electron microscopecitations
- 2020Luminescence behavior of semipolar (10-11) InGaN/GaN "bow-tie" structures on patterned Si substratescitations
- 2020Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (11-20) GaNcitations
- 2018Dislocation contrast in electron channelling contrast images as projections of strain-like componentscitations
- 2017Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffractioncitations
- 2017Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffractioncitations
- 2017Spatially-resolved optical and structural properties of semi-polar (11-22) AlxGa1-xN with x up to 0.56citations
- 2017Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin filmscitations
- 2017Exploring transmission Kikuchi diffraction using a Timepix detectorcitations
- 2016Reprint of
- 2016Optical and structural properties of GaN epitaxial layers on LiAlO2 substrates and their correlation with basal-plane stacking faultscitations
- 2016Electron channelling contrast imaging for III-nitride thin film structurescitations
- 2015Digital direct electron imaging of energy-filtered electron backscatter diffraction patternscitations
- 2013Electron channeling contrast imaging studies of nonpolar nitrides using a scanning electron microscopecitations
- 2012Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscopecitations
- 2008Rare earth doping of III-nitride alloys by ion implantationcitations
- 2004Development of CdSSe/CdS VCSELs for application to laser cathode ray tubes
- 2002Structural and optical properties of InGaN/GaN layers close to the critical layer thicknesscitations
- 2001Compositional pulling effects in InxGa1_xN/GaN layerscitations
Places of action
Organizations | Location | People |
---|
article
Dislocation contrast in electron channelling contrast images as projections of strain-like components
Abstract
The forward scattering geometry in the scanning electron microscope enables the acquisition of electron channelling contrast imaging (ECCI) micrographs. These images contain diffraction information from the beam of electrons “channelling in” into the sample. Since small, localised strains strongly affect the electron diffraction, defects which introduce lattice displacement in the region of the surface the electron beam is interacting with will be revealed as district variation in backscattered electron intensity. By acquiring multiple images from the same area in different diffraction conditions and comparing them against modelled predictions of defect strain sampled by diffraction, it is possible to characterise these defects. Here we discuss the relation between the elastic strain introduced by a threading dislocation intersecting the surface and the contrast features observed in the electron channelling contrast image of that region. Preliminary simulated channelling contrast images are shown for dislocations with known line direction and Burgers vectors using a two-beam dynamical diffraction model. These are demonstrated to be in qualitative agreement with measured images of dislocated polar wurtzite GaN acquired with two different diffraction condition.