People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tudor, Mj
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Synthesis and characterization of UV organic light-emitting electrochemical cells (OLECs) using phenanthrene fluorene derivatives for flexible applicationscitations
- 2022Solution-processed organic light-emitting electrochemical cells (OLECs) with blue colour emission via silver-nanowires (AgNWs) as Cathode
- 2022Printable bifluorene based ultra-violet (UV) organic light-emitting electrochemical cells (OLECs) with improved device performancecitations
- 2021Visible and ultraviolet Light emitting electrochemical cells realised on woven textilescitations
- 2021Spray-coated organic light emitting electrochemical cells realized on a standard woven polyester cotton textilecitations
- 2020Spray coated light emitting electrochemical cells on standard polyester cotton woven textiles
- 2018Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applicationscitations
- 2018Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applicationscitations
- 2018Optimised process of fully spray-coated organic solar cells on woven polyester cotton fabricscitations
- 2015Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substratescitations
- 2014Flexible screen printed thick film thermoelectric generator with reduced material resistivitycitations
- 2010Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applicationscitations
- 2009High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithographycitations
- 2008Micro and nanotechnologies for thermoelectric generators
- 2008Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughnesscitations
- 2008Towards a nanostructured thermoelectric generator using ion-track lithographycitations
- 2008Development of nanostructures for thermoelectric microgenerators using ion-track lithographycitations
- 2007Nanostructured thermoelectric generator for energy harvesting
- 2004Stiff Load Cell With High Overload Capability and Direct Frequency Output
- 2004Development of metallic digital strain gauges
Places of action
Organizations | Location | People |
---|
article
Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applications
Abstract
This paper reports a systematic study of the effect of nano-crystalline titanium dioxide (TiO2) formulations and annealing temperature conditions on the performance of dye sensitized solar cells (DSSCs) realized on fluorine tin oxide (FTO) glass substrates. DSSC fabrication is restricted to high temperature (>150 °C) process-compatible materials by the nano-crystalline process of the TiO2. DSSCs benefit from the use of lower cost materials and offer higher efficiency than organic solar cells but high processing temperatures limit their application on, for example, textile substrates. The aim of this study is to develop and optimize a low temperature processable TiO2 formulation suitable for both screen printing and spray coating. The results from this paper can be applied in future fabrication processes on flexible plastic and fabric substrates. The challenge of this research work is to achieve the smooth deposition and processing at 150 °C of TiO2 layers on glass substrates. We report a maximum DSSC efficiency of 4.3% achieved by screen printing and 2.5% achieved by spray coating on a glass substrate using the new low temperature process.