People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zybała, Rafał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Mg nanostructures with controlled dominant c-plane or m-plane facets by DC magnetron sputter depositioncitations
- 2024Using SPS Sintering System in Fabrication of Advanced Semiconductor Materials
- 2023Microstructural Evolution of Ni-SiC Composites Manufactured by Spark Plasma Sinteringcitations
- 2021Review of rapid fabrication methods of skutterudite materialscitations
- 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sinteringcitations
- 2018Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquidcitations
- 2017Effect of metallic coating on the properties of copper-silicon carbide compositescitations
- 2017Synthesis and characterization of antimony telluride for thermoelectric And optoelectronic applicationscitations
- 2017Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering Techniquecitations
Places of action
Organizations | Location | People |
---|
article
Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquid
Abstract
In this work, we present a new fabrication method of thermoelectric nanomaterials using Pulsed Plasma in Liquid (PPL)with a low-energy spark discharge. Thermoelectric (TE) materials can be used for direct energy conversion from heat intoelectricity. They are of particular interest as a result of enabling both clean energy transformation and waste heat energyharvesting. The efficiency of the conversion process depends on the Carnot cycle and the material’s properties, described by thethermoelectric figure-of-merit (ZT). This parameter is based on electrical conductivity, Seebeck coefficient and thermalconductivity. One can increase the ZT value by reducing the thermal conductivity e.g. through the nano-structuring of TEmaterials and, at the same time, conserving their electrical properties. CoSb3, which is a state-of-the-art TE material from theskutterudite family known as a narrow-band gap semiconductor with a parabolic bottom of the conduction band, was studied inthe present work.Binary skutterudite CoSb3 polycrystalline ingots were synthesized by a direct fusion technique from pure elements. Thedensified materials with a cylindrical shape were used as substrates in the fabrication process of CoSb3 nanoparticles via themodified Pulse Plasma in Liquid method. The nanopowders were consolidated using rapid Spark Plasma Sintering (SPS) with theprocessing time in minutes. X-ray diffraction (XRD), scanning electron microscopy (SEM/EDS) and scanning transmissionelectron microscopy (STEM) were used to characterize the synthesized powders and sinters. Thermal conductivity wasdetermined by the laser flash technique (LFA). Electrical properties such as resistivity and Seebeck coefficient were measured bythe four probe technique, as a function of temperature.