Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zybała, Rafał

  • Google
  • 9
  • 37
  • 139

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Mg nanostructures with controlled dominant c-plane or m-plane facets by DC magnetron sputter deposition1citations
  • 2024Using SPS Sintering System in Fabrication of Advanced Semiconductor Materialscitations
  • 2023Microstructural Evolution of Ni-SiC Composites Manufactured by Spark Plasma Sintering6citations
  • 2021Review of rapid fabrication methods of skutterudite materials12citations
  • 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sintering17citations
  • 2018Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquid5citations
  • 2017Effect of metallic coating on the properties of copper-silicon carbide composites27citations
  • 2017Synthesis and characterization of antimony telluride for thermoelectric And optoelectronic applications45citations
  • 2017Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering Technique26citations

Places of action

Chart of shared publication
Zawadzki, Jakub
1 / 1 shared
Wzorek, Marek
1 / 4 shared
Wójcicka, Aleksandra
1 / 1 shared
Barańczyk, Patrycja
1 / 1 shared
Borysiewicz, Michał A.
1 / 3 shared
Kaszyca, Kamil
3 / 5 shared
Nisar, Fatima
1 / 1 shared
Bucholc, Bartosz
1 / 3 shared
Błyskun, Piotr
1 / 11 shared
Rojek, Jerzy
1 / 1 shared
Chmielewski, Marcin
5 / 17 shared
Piątkowska, Anna
1 / 3 shared
Bazarnik, Piotr
3 / 49 shared
Jagiełło, Jakub
1 / 1 shared
Strojny-Nędza, Agata
3 / 7 shared
Nosewicz, Szymon
3 / 10 shared
Dobrowolski, Artur
1 / 1 shared
Diduszko, Ryszard
1 / 7 shared
Kruszewski, Mirosław Jakub
1 / 1 shared
Ciupiński, Łukasz
4 / 19 shared
Zdunek, Joanna
1 / 34 shared
Kurzydłowski, Krzysztof
1 / 114 shared
Kruszewski, Mirosław
2 / 16 shared
Michalski, Andrzej
1 / 13 shared
Dąbrowski, Franciszek
1 / 2 shared
Grzonka, Justyna
1 / 8 shared
Schmidt, Maksymilian
2 / 2 shared
Kamińska, Paulina
1 / 1 shared
Pietrzak, Katarzyna
4 / 8 shared
Jarząbek, Dariusz
1 / 19 shared
Lewandowska, Małgorzata
2 / 89 shared
Teodorczyk, Marian
1 / 2 shared
Mikuła, Andrzej
1 / 3 shared
Bogusławski, Jakub
1 / 1 shared
Soboń, Grzegorz
1 / 1 shared
Mars, Krzysztof
1 / 4 shared
Sotor, Jarosław
1 / 1 shared
Chart of publication period
2024
2023
2021
2019
2018
2017

Co-Authors (by relevance)

  • Zawadzki, Jakub
  • Wzorek, Marek
  • Wójcicka, Aleksandra
  • Barańczyk, Patrycja
  • Borysiewicz, Michał A.
  • Kaszyca, Kamil
  • Nisar, Fatima
  • Bucholc, Bartosz
  • Błyskun, Piotr
  • Rojek, Jerzy
  • Chmielewski, Marcin
  • Piątkowska, Anna
  • Bazarnik, Piotr
  • Jagiełło, Jakub
  • Strojny-Nędza, Agata
  • Nosewicz, Szymon
  • Dobrowolski, Artur
  • Diduszko, Ryszard
  • Kruszewski, Mirosław Jakub
  • Ciupiński, Łukasz
  • Zdunek, Joanna
  • Kurzydłowski, Krzysztof
  • Kruszewski, Mirosław
  • Michalski, Andrzej
  • Dąbrowski, Franciszek
  • Grzonka, Justyna
  • Schmidt, Maksymilian
  • Kamińska, Paulina
  • Pietrzak, Katarzyna
  • Jarząbek, Dariusz
  • Lewandowska, Małgorzata
  • Teodorczyk, Marian
  • Mikuła, Andrzej
  • Bogusławski, Jakub
  • Soboń, Grzegorz
  • Mars, Krzysztof
  • Sotor, Jarosław
OrganizationsLocationPeople

article

Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquid

  • Kruszewski, Mirosław
  • Grzonka, Justyna
  • Zybała, Rafał
  • Schmidt, Maksymilian
  • Kamińska, Paulina
  • Pietrzak, Katarzyna
  • Ciupiński, Łukasz
Abstract

In this work, we present a new fabrication method of thermoelectric nanomaterials using Pulsed Plasma in Liquid (PPL)with a low-energy spark discharge. Thermoelectric (TE) materials can be used for direct energy conversion from heat intoelectricity. They are of particular interest as a result of enabling both clean energy transformation and waste heat energyharvesting. The efficiency of the conversion process depends on the Carnot cycle and the material’s properties, described by thethermoelectric figure-of-merit (ZT). This parameter is based on electrical conductivity, Seebeck coefficient and thermalconductivity. One can increase the ZT value by reducing the thermal conductivity e.g. through the nano-structuring of TEmaterials and, at the same time, conserving their electrical properties. CoSb3, which is a state-of-the-art TE material from theskutterudite family known as a narrow-band gap semiconductor with a parabolic bottom of the conduction band, was studied inthe present work.Binary skutterudite CoSb3 polycrystalline ingots were synthesized by a direct fusion technique from pure elements. Thedensified materials with a cylindrical shape were used as substrates in the fabrication process of CoSb3 nanoparticles via themodified Pulse Plasma in Liquid method. The nanopowders were consolidated using rapid Spark Plasma Sintering (SPS) with theprocessing time in minutes. X-ray diffraction (XRD), scanning electron microscopy (SEM/EDS) and scanning transmissionelectron microscopy (STEM) were used to characterize the synthesized powders and sinters. Thermal conductivity wasdetermined by the laser flash technique (LFA). Electrical properties such as resistivity and Seebeck coefficient were measured bythe four probe technique, as a function of temperature.

Topics
  • nanoparticle
  • impedance spectroscopy
  • resistivity
  • scanning electron microscopy
  • x-ray diffraction
  • semiconductor
  • Energy-dispersive X-ray spectroscopy
  • thermal conductivity
  • electrical conductivity
  • sintering