Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gurau, C.

  • Google
  • 2
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Effect of high speed high pressure torsion parameters on grain refinement of coned shape Fe based SMA active elements2citations
  • 2015A comparative study of austenitic structure in NiTi and Fe based shape memory alloys after severe plastic deformation7citations

Places of action

Chart of shared publication
Bujoreanu, L. G.
2 / 2 shared
Gurau, G.
2 / 3 shared
Fernandes, Francisco Manuel Braz
2 / 124 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Bujoreanu, L. G.
  • Gurau, G.
  • Fernandes, Francisco Manuel Braz
OrganizationsLocationPeople

conferencepaper

A comparative study of austenitic structure in NiTi and Fe based shape memory alloys after severe plastic deformation

  • Bujoreanu, L. G.
  • Gurau, C.
  • Gurau, G.
  • Fernandes, Francisco Manuel Braz
Abstract

The effect of high speed high pressure torsion (HS-HPT) was studied in NiTi and FeMnSiCr SMAs, by comparison. Severe plastic deformation was performed in austenite state for both types of alloys. The alloys subjected to HS-HPT, reduced their grain size due to microstructure fragmentation by compression and torsion. The active elements were achieved being able to support variable ranges of processing parameters like force, pressure, rotation speed and time of torsion. The evolution of microstructural refinement in the samples subjected to different deformation by HS-HPT, were studied by optical and scanning electron microscopy observation and the thermal effect was reveled using differential scanning calorimetry (DSC). (C) 2015 The Authors. Published by Elsevier Ltd. ; publishersversion ; published

Topics
  • polymer
  • grain
  • grain size
  • scanning electron microscopy
  • differential scanning calorimetry