People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Graves, John
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Soldering tip and method
- 2023Selective soldering nozzles
- 2023Analysis of Pre-Treatment Processes to Enable Electroplating on Nitrided Steel
- 2023The challenges in selective soldering and meeting training needs
- 2023Braze head and method
- 2022Thiourea Leachingcitations
- 2021Electroless copper plating obtained by Selective Metallisation using a Magnetic Field (SMMF)citations
- 2020The effects of turmeric on the grain structure and properties of copper electrodeposited composites
- 2018Mechanism for the development of Sn-Cu alloy coatings produced by pulsed current electrodepositioncitations
- 2018Selective metallization of non-conductive materials by patterning of catalytic particles and the application of a gradient magnetic fieldcitations
- 2018Additive process for patterned metallized conductive tracks on cotton with applications in smart textilescitations
- 2018Selective electroless metallization of non-conductive substrates enabled by a Fe3O4/Ag catalyst and a gradient magnetic fieldcitations
- 2014Functionalised copper nanoparticles as catalysts for electroless platingcitations
- 2013Ultrasonically enabled low temperature electroless plating for advanced electronic manufacture
- 2012Ultrasonically enabled low temperature electroless plating for sustainable electronic manufacturecitations
- 2001The use of insoluble anodes in acid sulphate copper electrodeposition solutionscitations
Places of action
Organizations | Location | People |
---|
article
Mechanism for the development of Sn-Cu alloy coatings produced by pulsed current electrodeposition
Abstract
Pulsed current (PC) electrodeposition has become an essential tool for producing coatings in a wide range of industries. The pulsed current can have a significant influence on the composition, morphology and properties of electrodeposited coatings and this is particularly true when plating an alloy. In this study, the mechanism for the development of Sn-Cu alloy coatings produced by PC electrodeposition was investigated. Sn-Cu alloy coatings produced by PC electrodeposition were essentially composed of a dual layer of Sn-Cu electrodeposits and Cu6Sn5 inter metallic compounds (IMCs). In addition, it was observed that pulsed Sn-Cu electrodeposits exhibited an increased Cu content. Experiments were carefully designed to elucidate the mechanism for this important finding and based on their results a theory is proposed which explains the increased Cu content in terms of a metal displacement reaction occurring during the ‘relaxation’ time of PC electrodeposition.