People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Falck, R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2019Microstructure and Mechanical Performance of Additively Manufactured Aluminum 2024-T3/Acrylonitrile Butadiene Styrene Hybrid Joints Using an AddJoining Techniquecitations
- 2018AddJoining: a novel additive manufacturing approach for layered metal-polymer hybrid structurescitations
- 2018AddJoiningcitations
Places of action
Organizations | Location | People |
---|
article
AddJoining
Abstract
<p>A novel assembling technique based on additive manufacturing and materials joining principles has been introduced for layered metal-polymer hybrid structures. The AddJoining technique produces layered hybrid structures, using polymer 3D printing methods. The feasibility of the technique was demonstrated using fused deposition modeling for single-lap joint configuration. Microstructure and mechanical strength of the joints were studied using two combinations of materials; aluminum 2024-T3 with acrylonitrile butadiene styrene and aluminum 2024-T3 with alternate layers of polyamide-6 and carbon-fiber-reinforced polyamide-6. The latter reached an average ultimate lap-shear strength of 21.9 ± 1.1 MPa, showing 19% superior performance to the adhesively bonded joints. This exploratory investigation showed the potential of AddJoining to produce metal-polymer layered structures.</p>