People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcafee, Marion
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Embedding a surface acoustic wave sensor and venting into a metal additively manufactured injection mould tool for targeted temperature monitoringcitations
- 2024Sensorised metal AM injection mould tools for in-process monitoring of cooling performance with conventional and conformal cooling channel designscitations
- 2024Investigation of the effect of Graphene oxide concentration on the final properties of Aspirin loaded PLA filaments for drug delivery systems
- 2023Enhancement of biodegradability of polylactides by γ-ray irradiation
- 2023Interpretable machine learning methods for monitoring polymer degradation in extrusion of polylactic acidcitations
- 2021Comparison of data summarization and feature selection techniques for in-process spectral datacitations
- 2018A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithmscitations
- 2014The application of computational chemistry and chemometrics to developing a method for online monitoring of polymer degradation in the manufacture of bioresorbable medical implants
- 2012Water spray cooling of polymerscitations
- 2012Dynamic grey-box modeling for online monitoring of extrusion viscositycitations
- 2011The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusioncitations
- 2011The inferential monitoring of the screw disturbance torque to predict process fluctuations in polymer extrusioncitations
- 2011Internal cooling in rotational molding-A reviewcitations
- 2011Quantitative characterization of clay dispersion in polymer-clay nanocompositescitations
- 2010Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopy
- 2010Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopycitations
- 2010Structure-property relationships in biaxially deformed polypropylene nanocompositescitations
- 2007Enhancing process insight in polymer extrusion by grey box modellingcitations
- 2007A novel approach to dynamic modelling of polymer extrusion for improved process controlcitations
- 2007A Soft Sensor for viscosity control of polymer extrusioncitations
- 2006Energy efficient extrusion
- 2003Design of a soft sensor for polymer extrusion
Places of action
Organizations | Location | People |
---|
article
Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopy
Abstract
<p>This paper presents a novel method to describe the microstructure of polymer/clay nanocomposites quantitatively. Based on the image analyses of transmission electron microscopy (TEM) and optical microscopy micrographs, two parameters, degree of dispersion (χ) and mean interparticle distance per unit volume of clay (λ<sub>V</sub>) are proposed to describe the level of clay dispersion. The degree of dispersion gives the percentage of exfoliation, and λ<sub>V</sub> is a measure of spatial separation between particles relative to clay loading. A polypropylene/clay system was chosen as an example to show the effects of processing conditions and biaxial stretching on clay dispersion using the proposed quantifiers. It provides insights into the 'real' clay dispersion using a combination of both microscopical and macroscopical aspects.</p>