People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salem, Ezzedine Ben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mechanosynthesis of carbonate and lithium co-substituted hydroxyfluorapatite
Abstract
The presence of fluoride, lithium and carbonate group within hydroxyapatite occurring naturally within the body provides the basis for investigating the sintering ability of co-substituted hydroxyfluorapatites nanopowders for use as biomaterials. Ca10-xLix(PO4)6-x(CO3)x(OH)F nanopowders, with x equal to 0, 0.5, 1, 1.5, 2 and 2.5 were prepared using mechanosynthesis and their extensive characterization was realized. Substitution causes contraction of the unit hexagonal cell along the a-axis and elongation along the c-axis, as well as a decrease in the degree of crystallinity of the powders, and an increase of the amounts of unreacted calcium and lithium carbonates. Crystallite sizes and strains, determined by the Halder & Wagner method, remain the same whatever x. Spectroscopic analyses show that B-type carbonated apatite is formed. Annealing at 500°C improves the crystallinity of the apatite phase with low percentages of calcite and lithium phosphate as secondary phases (x<=2). Transmission electron microscopy observations show that untreated and calcined powders consist mainly of spherical nanoparticles. As-mechanosynthesized Ca9Li(PO4)5(CO3)(OH)F powder, sintered by Spark Plasma 2 Sintering, densifies in the temperature range of 580 to 650 °C. The crystallite size remains the same than that of the untreated-powder (about 15 nm).