People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Berry, Frank J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2015Synthesis and characterization of novel Ge doped Sr1−yCayFeO3−δ SOFC cathode materialscitations
- 2014Crystallographic and magnetic structure of the perovskite-type compound BaFeO2.5 : unrivaled complexity in oxygen vacancy orderingcitations
- 2013Investigation into the effect of Si doping on the performance of SrFeO3−δ SOFC electrode materialscitations
- 2008Synthesis and structural investigation of a new oxide fluoride of composition Ba2SnO2.5F3·xH2O (x≈0.5)citations
- 2002Tin-, titanium-, and magnesium-doped alpha-Cr2O3: characterisation and rationalisation of the structurescitations
- 2002Prediction of defect structure in lithiated tin- and titanium-doped alpha-Fe2O3 using atomistic simulationcitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of novel Ge doped Sr1−yCayFeO3−δ SOFC cathode materials
Abstract
In this paper we report the successful incorporation of germanium into Sr1−yCayFeO3−δ perovskite materials for potential applications as electrode materials for solid oxide fuel cells. It was observed that Ge doping leads to a change from a tetragonal cell (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). Annealing experiments in 5%H2/95%N2 (up to 800 °C) also showed the stabilization of the cubic form in reducing conditions for the 15 mol% Ge-doped SrFeO3−δ sample, in contrast to the undoped systems which showed a transition to an oxygen vacancy ordered brownmillerite-type phase. In order to examine the potential of these systems as SOFC cathodes, composite electrodes comprising 50% Ce0.9Gd0.1O1.95 and 50% Sr1−yCay(Fe/Ge)O3−δ on dense Ce0.9Gd0.1O1.95 pellets were examined in air. The results showed an improvement in the area specific resistances (ASR) values for the Ge-doped samples with respect to the undoped ones, with the best performance for the Ge doped SrFeO3−δ system (0.24 and 0.06 Ω cm2 at 700 and 800 °C, respectively, for SrFe0.85Ge0.15O3−δ). Thus, the results show that germanium can be incorporated into Sr1−yCayFeO3−δ-based materials leading to materials with potential for use as cathode materials in solid oxide fuel cells (SOFC).