People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holze, Rudolf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Composites of Intrinsically Conducting Polymers with Carbonaceous Materials for Supercapacitors – An Update
- 2016Electrochemical supercapacitive properties of polypyrrole thin films: influence of the electropolymerization methodscitations
- 2015Asymmetric supercapacitors based on hybrid CuO@Reduced Graphene Oxide@Sponge versus Reduced Graphene Oxide@Sponge Electrodescitations
- 2014Screen Printed Asymmetric Supercapacitors based on LiCoO2 and Graphene Oxidecitations
- 2013All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolytecitations
- 2013Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitorscitations
- 2013A successive ionic layer adsorption and reaction (SILAR) method to induce Mn3O4 nanospots on CNTs for supercapacitorscitations
- 2013CuO cauliflowers for supercapacitor application: Novel potentiodynamic depositioncitations
- 2009Theoretical Treatment of 3-phenylsubstituted Thiophenes and their Intrinsically Conducting Polymerscitations
- 2009Corrosion Protection Performance and Spectroscopic Investigations of Soluble Conducting Polyaniline-Dodecylbenzenesulfonate Synthesized via Inverse Emulsion Procedurecitations
Places of action
Organizations | Location | People |
---|
article
CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition
Abstract
In present investigation, synthesis and characterization of novel cauliflower-like copper oxide (CuO) and its electrochemical properties have been performed. The utilized CuO cauliflowers were prepared by potentiodyanamic mode from an aqueous alkaline bath. X-ray diffraction pattern confirm the formation of monoclinic CuO cauliflowers. Scanning electron micrograph analysis reveals that CuO cauliflowers are uniformly spread all over the substrate surface with the surface area of 49 m2 g-1 with bimodal pore size distribution. Electrochemical analysis shows that CuO cauliflower exhibits high specific capacitance of 179 Fg-1 in 1 M Na2SO4 electrolyte with 81% capacity retention after 2000 cycles. The Ragone plot discovers better power and energy densities of cauliflowers-like CuO sample. Present investigation illustrates that the potentiodynamic approach for the direct growth of cauliflower-like CuO is simple and cost-effective and can be applied for synthesis of other metal oxides, polymers etc.