People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dhawale, Dattatray
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2013Porous CuO nanosheet clusters prepared by a surfactant assisted hydrothermal method for high performance supercapacitorscitations
- 2012Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic applicationcitations
- 2011Effect of different modes of electrodeposition on supercapacitive properties of MnO2 thin filmscitations
- 2010Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunctioncitations
- 2010Effect of electron irradiation on properties of chemically deposited TiO2 nanorodscitations
- 2010Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapacitive studiescitations
- 2010Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor applicationcitations
- 2010Fabrication of copper oxide multilayer nanosheets for supercapacitor applicationcitations
- 2009A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor applicationcitations
Places of action
Organizations | Location | People |
---|
article
Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application
Abstract
Cu 2ZnSnS 4 (CZTS) thin films have been prepared by a novel chemical successive ionic layer adsorption and reaction (SILAR) method. These films were annealed in vacuum at 673 K and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy, electrical, and wettability studies. The X-ray diffraction studies showed the formation of kesterite structure of CZTS films. Scanning electron micrograph revealed the formation of densely packed, compact and large grained CZTS films. The CZTS films showed high optical absorption (10 4 cm -1) exhibiting band gap energy of 1.55 eV. Wettability test revealed the hydrophilic nature of CZTS films. The CZTS thin films showed semiconducting behavior with p-type electrical conductivity. Further photovoltaic activity of these films was studied by forming the photoelectrochemical cell.