People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024The Transient Thermal Ageing of Eurofer 97 by Mitigated Plasma Disruptions
- 2024Under the microscope:Reduced Activation Ferritic Martensitic Steel Eurofer-97 Following Ion‑Irradiation and High‑Temperature High‑Pressure Water Exposure
- 2022Examination of a Ferritic-Martensitic Steel following Irradiation and High Temperature Water Corrosion
- 2021The Effects of Fusion Reactor Thermal Transients on the Microstructure of Eurofer-97 Steelcitations
Places of action
Organizations | Location | People |
---|
article
The Transient Thermal Ageing of Eurofer 97 by Mitigated Plasma Disruptions
Abstract
Plasma disruptions in a commercial-scale tokamak will impose high magnitude, short-duration thermal loads on its plasma-facing first wall. Despite a plethora of mitigation measures, these severe, off-normal events are likely to briefly expose the structural materials of the first wall to significant temperature excursions. Eurofer 97, the reference structural material for the plasma-facing first wall of the EU DEMO tokamak, is a reduced activation 9Cr steel with a normalised and tempered ferritic/martensitic microstructure. Repeated exposure to the thermal effects of disruptions over the operating lifetime of a reactor may promote a cumulative evolution of Eurofer 97′s microstructure, affecting key material properties crucial to first wall performance. This novel transient thermal degradation mechanism has been explored via a laser-based transient heating experiment, supported by time-dependent finite element thermal analysis studies of DEMO’s water-cooled lithium–lead first wall during a mitigated plasma disruption. Transient-affected samples of Eurofer 97 were characterised via scanning and transmission electron microscopy techniques (SEM/TEM), including electron backscatter diffraction (EBSD), energy-dispersive X-ray spectroscopy (EDX), and selective area electron diffraction (SAED). Microhardness and magnetisation testing data are also presented. A single 700 °C thermal transient was found sufficient to coarsen and partially recrystallise Eurofer 97′s tempered martensite sub-grains at the tungsten-Eurofer 97 interface. Further transient exposure at 700 °C resulted in the significant growth of equiaxed grains, the nucleation of intergranular Cr-rich M7C3 and M23C6 carbides, and the coarsening of V-rich and intra-granular Ta-rich MX precipitates. The microstructural effects of 850 °C transients are also reported. Notably, after 1,000 transients at 850 °C the hardness of Eurofer 97 was found to have decreased by 32 %.