Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kunschert, Georg

  • Google
  • 5
  • 22
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024In situ conductometry for studying the homogenization of Al-Mg-Si alloys and predicting extrudate grain structure through machine learningcitations
  • 2024Mechanisms of electrically assisted deformation of an Al–Mg alloy (AA5083-H111): Portevin–Le Chatelier phenotype transformation, suppression, and prolonged neckingcitations
  • 2024Parameter study of extrusion simulation and grain structure prediction for 6xxx alloys with varied Fe content5citations
  • 2023Tolerance of Al–Mg–Si Wrought Alloys for High Fe Contents: The Role of Effective Si11citations
  • 2022Electrically assisted formingcitations

Places of action

Chart of shared publication
Österreicher, Johannes Albert
5 / 12 shared
Antić, Miloš
1 / 1 shared
Ehmeier, Florian
1 / 1 shared
Mikulović, Milomir
1 / 1 shared
Tükör, Zuzana
1 / 1 shared
Hovden, Sindre
1 / 1 shared
Zickler, Gregor A.
2 / 4 shared
Kronsteiner, Johannes
2 / 5 shared
Hofbauer, Manuel
1 / 1 shared
Maimone, Stefan
1 / 1 shared
Walenta, Wolfram
1 / 1 shared
Živanović, Dragan
1 / 1 shared
Arnoldt, Aurel
1 / 6 shared
Cerny, Angelika
3 / 4 shared
Arnoldt, Aurel R.
1 / 1 shared
Mayr, Johann
1 / 1 shared
Grabner, Florian
2 / 8 shared
Hovden, Sindre Løver
1 / 1 shared
Arnoldt, Aurel Ramon
2 / 9 shared
Horwatitsch, Dieter
1 / 1 shared
Gneiger, Stefan
1 / 14 shared
Denk, Michael
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Österreicher, Johannes Albert
  • Antić, Miloš
  • Ehmeier, Florian
  • Mikulović, Milomir
  • Tükör, Zuzana
  • Hovden, Sindre
  • Zickler, Gregor A.
  • Kronsteiner, Johannes
  • Hofbauer, Manuel
  • Maimone, Stefan
  • Walenta, Wolfram
  • Živanović, Dragan
  • Arnoldt, Aurel
  • Cerny, Angelika
  • Arnoldt, Aurel R.
  • Mayr, Johann
  • Grabner, Florian
  • Hovden, Sindre Løver
  • Arnoldt, Aurel Ramon
  • Horwatitsch, Dieter
  • Gneiger, Stefan
  • Denk, Michael
OrganizationsLocationPeople

article

In situ conductometry for studying the homogenization of Al-Mg-Si alloys and predicting extrudate grain structure through machine learning

  • Österreicher, Johannes Albert
  • Antić, Miloš
  • Ehmeier, Florian
  • Mikulović, Milomir
  • Tükör, Zuzana
  • Hovden, Sindre
  • Zickler, Gregor A.
  • Kunschert, Georg
  • Kronsteiner, Johannes
  • Hofbauer, Manuel
  • Maimone, Stefan
  • Walenta, Wolfram
  • Živanović, Dragan
  • Arnoldt, Aurel
  • Cerny, Angelika
Abstract

In industrial practice, no sensors capable of obtaining microstructural information in situ during thermomechanical processing of Al alloys are commonly employed. Inductive electrical conductivity measurement is safe, inexpensive, and capable of acquiring valuable information about precipitation and dissolution processes. However, commercial eddy current sensors work only at low temperatures near room temperature and are thus not suitable for in situ conductometry during heat treatments of Al alloys. We designed a high -temperature eddy current sensor and performed in situ conductometry during the homogenization of six Al -Mg -Si wrought alloys, three of which are experimental recycling -friendly alloys with increased Fe content. The results are interpreted with regard to microstructural investigations, and the advantages and limitations of our approach are discussed. As a proof -of -concept, we show how the conductivity curves and extrusion process parameters can be combined to predict final extrudate grain structures using machine learning. To achieve this, we employed finite element simulation of extrusion coupled with microstructural simulation over a wide parameter range, validated by extrusion experiments and metallography, and trained a feedforward neural network. We believe our interdisciplinary approach can lead to improvements in the industrial processing of Al wrought alloys.

Topics
  • impedance spectroscopy
  • grain
  • experiment
  • simulation
  • extrusion
  • precipitation
  • homogenization
  • electrical conductivity
  • machine learning
  • conductometry