People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kiener, Daniel
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Micro-Mechanical Fracture Investigations on Grain Size Tailored Tungsten-Copper Nanocompositescitations
- 2024Exploring Refinement Characteristics in FeTi‐Cu x Composites: A Study of Localization and Abrasion Constraintscitations
- 2024Mechanical processing and thermal stability of the equiatomic high entropy alloy TiVZrNbHf under vacuum and hydrogen pressurecitations
- 2024Automatic and time-resolved determination of fracture characteristics from in situ experimentscitations
- 2023Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloycitations
- 2023Special Issue “Novel Structural and Functional Material Properties Enabled by Nanocomposite Design”citations
- 2023Deformation and failure behavior of nanocrystalline WCucitations
- 2023Precipitation behavior of hexagonal carbides in a C containing intermetallic γ-TiAl based alloycitations
- 2023From unlikely pairings to functional nanocomposites: FeTi–Cu as a model systemcitations
- 2023On the stability of Ti(Mn,Al)2 C14 Laves phase in an intermetallic Ti–42Al–5Mn alloycitations
- 2023Revealing the nano-scale mechanisms of the limited non-basal plasticity in magnesium
- 2023Nanoscale printed tunable specimen geometry enables high-throughput miniaturized fracture testingcitations
- 2023On the stability of Ti(Mn,Al)$_2$ C14 Laves phase in an intermetallic Ti–42Al–5Mn alloycitations
- 2022In situ micromechanical analysis of a nano-crystalline W-Cu compositecitations
- 2022Interface mediated deformation and fracture of an elastic–plastic bimaterial system resolved by in situ transmission scanning electron microscopycitations
- 2022Tuning mechanical properties of ultrafine-grained tungsten by manipulating grain boundary chemistrycitations
- 2022Oxidation resistance of cathodic arc evaporated Cr$_{0.74}$Ta$_{0.26}$N coatingscitations
- 2022The influence of chemistry on the interface toughness in a WTi-Cu systemcitations
- 2021Prospects of Using Small Scale Testing to Examine Different Deformation Mechanisms in Nanoscale Single Crystals—A Case Study in Mgcitations
- 2021Extracting information from noisy data: strain mapping during dynamic in situ SEM experimentscitations
- 2021Controlling the high temperature deformation behavior and thermal stability of ultra-fine-grained W by re alloyingcitations
- 2021How grain boundary characteristics influence plasticity close to and above the critical temperature of ultra-fine grained bcc Ta2.5Wcitations
- 2020Thermally activated deformation mechanisms and solid solution softening in W-Re alloys investigated via high temperature nanoindentationcitations
- 2020Correlation between fracture characteristics and valence electron concentration of sputtered Hf-C-N based thin filmscitations
- 2020In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloycitations
- 2020Experimental and Numerical Investigation of the Deformation and Fracture Mode of Microcantilever Beams Made of Cr(Re)/Al2O3 Metal–Matrix Compositecitations
- 2020In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loopscitations
- 2020Probing defect relaxation in ultra-fine grained Ta using micromechanical spectroscopycitations
- 2019Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phasecitations
- 2019Rate limiting deformation mechanisms of bcc metals in confined volumescitations
- 2018In-situ elastic-plastic fracture mechanics on the microscale by means of continuous dynamical testingcitations
- 2018In-situ TEM observation of {101¯2} twin-dominated deformation of Mg pillarscitations
- 2016Cross-sectional structure-property relationship in a graded nanocrystalline Ti1-xAlxN thin filmcitations
- 2016Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Compositecitations
- 2015Fracture mechanics of thin film systems on the sub-micron scalecitations
- 2015Fracture mechanics of thin film systems on the sub-micron scalecitations
- 2013Influence of Metastable Retained Austenite on Macro and Micromechanical Properties of Steel Processed by the Q&P Processcitations
- 2010Influence of Yttrium on the Thermal Stability of Ti-Al-N Thin Filmscitations
- 2009Overview on established and novel FIB based miniaturized mechanical testing using in-situ SEMcitations
Places of action
Organizations | Location | People |
---|
article
Automatic and time-resolved determination of fracture characteristics from in situ experiments
Abstract
The characterization of materials in ever smaller dimensions is crucial for the growing demand for miniaturized devices. Hence, in situ fracture experiments are frequently performed at the micron to sub-micron scale. To evaluate fracture process of these experiments, knowledge of the crack length or the crack tip opening displacement is required. Acquired in situ frames provide a direct measurement of the crack length, crack tip opening displacement and -angle. An algorithm was developed to extract these parameters from the in situ frame sequences automatically. To verify the performance of the algorithm, fracture characteristics were measured manually for several frames of the available in situ experiments. The fracture behavior of these samples ranged from brittle over semi-brittle to ductile. The comparison between algorithmic results and manual measurements demonstrated the applicability of the algorithm to different fracture behaviors. Additionally, the fracture characteristics determined by the algorithm are in accordance with the fracture toughness data reported in literature. The crack tip opening displacement measurement gives thorough insight into the plastic deformation during fracture. The automatic extraction of the fracture characteristics allows a more detailed analysis of small-scale fracture processes and enables a reproducible, continuous evaluation of the fracture characteristics of all frames.