People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knowles, David M.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavitiescitations
- 2024Productive Automation of Calibration Processes for Crystal Plasticity Model Parameters via Reinforcement Learningcitations
- 2024Calibration and surrogate model-based sensitivity analysis of crystal plasticity finite element models
- 2024Towards a Data-Driven Evolutionary Model of the Cyclic Behaviour of Austenitic Steels
- 2024Effect of grain boundary misorientation and carbide precipitation on damage initiationcitations
- 2023Exploring 3D X-Ray Diffraction Method to Validate Approaches in Materials Modelling
- 2022A method to extract slip system dependent information for crystal plasticity modelscitations
- 2022The effects of internal stresses on the creep deformation investigated using in-situ synchrotron diffraction and crystal plasticity modellingcitations
- 2021Comparing Techniques for Quantification of Creep Cavities
- 2021The role of grain boundary ferrite evolution and thermal aging on creep cavitation of type 316H austenitic stainless steelcitations
- 2021Evaluation of fracture toughness and residual stress in AISI 316L electron beam weldscitations
- 2020Microstructure-informed, predictive crystal plasticity finite element model of fatigue-dwellscitations
- 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffractioncitations
- 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffractioncitations
- 2020The role of grain boundary orientation and secondary phases in creep cavity nucleation of a 316h boiler headercitations
- 2019Effect of Plasticity on Creep Deformation in Type 316h Stainless Steel
- 2019Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEMcitations
- 2018Influence of prior cyclic plasticity on creep deformation using crystal plasticity modellingcitations
- 2018Comparison of predicted cyclic creep damage from a multi-material weldment FEA model and the traditional r5 volume 2/3 weldment approach
Places of action
Organizations | Location | People |
---|
article
A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavities
Abstract
The study and modeling of material degradation processes, such as the initiation and growth of creep cavities in high-temperature applications, require a correlative and comprehensive knowledge of the microstructure. However, individual microscopy is limited to a small region and specific microstructural information of the specimen. This work demonstrates a novel correlative microscopy approach for characterising creep cavitation and establishing correlations with local microstructural parameters in a statistical manner. This approach combines datasets<br/>from stitched higher-resolution backscattered electron (BSE) images, XeF2 FIB images, and backscattered electron<br/>diffraction (EBSD) maps with advanced image correlation techniques. Deep-learning image segmentation techniques<br/>and statistical analysis are applied to find relations between creep cavitation and local microstructural environment. This approach is demonstrated in a cyclic creep-tested 316H stainless steel specimen with extensive creep cavities. The results show that in this material, strain localization, grain boundary misorientation, and substantial precipitation dominate the nucleation of cavities, whereas other microstructural properties such as grain size and Schmid factor play smaller roles. This study presents the use of the correlative microscopy approach to provide new insights into creep cavitation behaviour and its implications for establishing creep cavitation damage models.