People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moore, Stacy R.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Microstructural Analysis of Ex-Service Neutron Irradiated Stainless Steel Nuclear Fuel Cladding by High-Speed AFM
- 2024The Transient Thermal Ageing of Eurofer 97 by Mitigated Plasma Disruptions
- 2024A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavitiescitations
- 2023Microstructural modelling and characterisation of laser-keyhole welded Eurofer 97citations
- 2022Stress Corrosion Cracking in Stainless Steelscitations
- 2021Sample Preparation Methods for Optimal HS-AFM Analysiscitations
- 2019Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEMcitations
- 2018A study of dynamic nanoscale corrosion initiation events by HS-AFMcitations
- 2018Development of an adapted electrochemical noise technique for in-situ corrosion monitoring of spent nuclear fuel aqueous storage environments
- 2017Investigating corrosion using high-speed AFM
- 2017In situ imaging of corrosion processes in nuclear fuel claddingcitations
Places of action
Organizations | Location | People |
---|
article
A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavities
Abstract
The study and modeling of material degradation processes, such as the initiation and growth of creep cavities in high-temperature applications, require a correlative and comprehensive knowledge of the microstructure. However, individual microscopy is limited to a small region and specific microstructural information of the specimen. This work demonstrates a novel correlative microscopy approach for characterising creep cavitation and establishing correlations with local microstructural parameters in a statistical manner. This approach combines datasets<br/>from stitched higher-resolution backscattered electron (BSE) images, XeF2 FIB images, and backscattered electron<br/>diffraction (EBSD) maps with advanced image correlation techniques. Deep-learning image segmentation techniques<br/>and statistical analysis are applied to find relations between creep cavitation and local microstructural environment. This approach is demonstrated in a cyclic creep-tested 316H stainless steel specimen with extensive creep cavities. The results show that in this material, strain localization, grain boundary misorientation, and substantial precipitation dominate the nucleation of cavities, whereas other microstructural properties such as grain size and Schmid factor play smaller roles. This study presents the use of the correlative microscopy approach to provide new insights into creep cavitation behaviour and its implications for establishing creep cavitation damage models.