People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ayas, Can
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Holistic computational design within additive manufacturing through topology optimization combined with multiphysics multi-scale materials and process modellingcitations
- 2023Design for material properties of additively manufactured metals using topology optimizationcitations
- 2022Combined effects of stress and temperature on hydrogen diffusion in non-hydride forming alloys applied in gas turbinescitations
- 2021Hydrogen diffusion under the effect of stress and temperature gradients
- 2019A mold insert case study on topology optimized design for additive manufacturing
- 2019Topology optimization of an injection mold insert with additive manufacturing constraints
- 2019Improving the manufacturability of metal AM parts
- 2010A continuum framework for grain boundary diffusion in thin film/substrate systemscitations
Places of action
Organizations | Location | People |
---|
article
Design for material properties of additively manufactured metals using topology optimization
Abstract
In metal Additive Manufacturing (AM), the deposited material is subjected to a series of heating and cooling cycles. The locally occurring temperature extremes and cooling rates determine solid-state phase fractions, material microstructure, texture, and ultimately the local material properties. As the shape of a part determines the local thermal history during AM, this offers an opportunity to influence these material properties through design. In this paper, we present a way to obtain desired properties by controlling the local thermal history. This is achieved through topology optimization of the printed part while considering its entire transient thermal history. As an example of this approach, this work focuses on high strength low alloy steels, where resulting phase fractions significantly influence mechanical properties such as yield strength and ductility. These solid-state phase fractions depend on cooling rates in a particular critical temperature range. The phase composition and hence the local yield strength in target regions can be controlled by constraining the cooling time in this range. Numerical examples illustrate the capability of the proposed approach in adapting part designs to achieve various desired material properties. ; Materials and Manufacturing ; Computational Design and Mechanics