People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alfreider, Markus
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Stabilization of mechanical strength in a nanocrystalline CoCrNi concentrated alloy by nitrogen alloying
- 2024Micro-Mechanical Fracture Investigations on Grain Size Tailored Tungsten-Copper Nanocompositescitations
- 2024Automatic and time-resolved determination of fracture characteristics from in situ experimentscitations
- 2023Deformation and failure behavior of nanocrystalline WCucitations
- 2023Magnetic Properties of a High-Pressure Torsion Deformed Co-Zr Alloycitations
- 2023Revealing the nano-scale mechanisms of the limited non-basal plasticity in magnesium
- 2023Nanoscale printed tunable specimen geometry enables high-throughput miniaturized fracture testingcitations
- 2022In situ micromechanical analysis of a nano-crystalline W-Cu compositecitations
- 2022Interface mediated deformation and fracture of an elastic–plastic bimaterial system resolved by in situ transmission scanning electron microscopycitations
- 2022The influence of chemistry on the interface toughness in a WTi-Cu systemcitations
- 2021Prospects of Using Small Scale Testing to Examine Different Deformation Mechanisms in Nanoscale Single Crystals—A Case Study in Mgcitations
- 2021Extracting information from noisy data: strain mapping during dynamic in situ SEM experimentscitations
- 2020Correlation between fracture characteristics and valence electron concentration of sputtered Hf-C-N based thin filmscitations
- 2020In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloycitations
- 2020Probing defect relaxation in ultra-fine grained Ta using micromechanical spectroscopycitations
- 2019Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phasecitations
- 2019Rate limiting deformation mechanisms of bcc metals in confined volumescitations
- 2018In-situ elastic-plastic fracture mechanics on the microscale by means of continuous dynamical testingcitations
- 2018In-situ TEM observation of {101¯2} twin-dominated deformation of Mg pillarscitations
- 2017The influence of deformation and proton-irradiation on the mechanical behaviour in nano-crystalline stainless steels
- 2016Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Compositecitations
Places of action
Organizations | Location | People |
---|
article
Nanoscale printed tunable specimen geometry enables high-throughput miniaturized fracture testing
Abstract
Two-photon lithography (TPL) enables the design of novel micromechanical specimens, down to sub-micron resolution, thus extending the possibilities for device and material characterisation and pushing the boundaries of a broad range of miniaturized technologies such as optics, analytics, and medicine. Employing a push-to-pull geometry, incorporating double edge notched tension specimens loaded in mode I, the specimen manufacturing and testing can be automated to a large extent. This allows for the use of large parameter space characterisation methods as the essential work of fracture, with an experimentally simpler to realize compression testing setup. Within this work, a methodology is outlined for automated specimen direct laser writing with a TPL-device and subsequent testing via a nanoindenter. In total, 2100 specimens were manufactured, of which 1997 could be used for evaluation. Estimations for the essential work of fracture of the used photoresist is presented, with regards to influencing parameters such as testing displacement rate and laser writing power. A discussion of its statistical robustness and validity considerations is included. This will act as a basis framework for further statistical fracture evaluation schemes for other resin materials, as well as for probing thin film systems.