People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharifikolouei, Elham
University of Eastern Piedmont Amadeo Avogadro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutmentcitations
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutment
- 2023Life cycle assessment for the production of MSWI fly-ash based porous glass-ceramics: Scenarios based on the contribution of silica sources, methane aided, and energy recoveriescitations
- 2023Ti$_{40}$Zr$_{10}$Cu$_{36}$Pd$_{14}$ bulk metallic glass as oral implant materialcitations
- 2023Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant materialcitations
- 2022Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glasscitations
- 2022New-generation biocompatible Ti-based metallic glass ribbons for flexible implantscitations
- 2022Magnetron Sputtered Non‐Toxic and Precious Element‐Free TiZrGe Metallic Glass Nanofilms with Enhanced Biocorrosion Resistancecitations
- 2021Ceramics, Glass and Glass-Ceramicscitations
- 2020Fabrication of metal microfibers by melt-spinning
- 2017APPARATUS AND METHOD OF MANUFACTURING METALLIC OR INORGANIC FIBERS HAVING A THICKNESS IN THE MICRON RANGE BY MELT SPINNING
Places of action
Organizations | Location | People |
---|
article
Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant material
Abstract
The application of highly biocompatible advanced materials leads to fewer complications and more successful medical treatments. This study proposes Ti40Zr10Cu36Pd14 bulk metallic glass (BMG) as an oral implant material and provides insights into its possible processing routes, where high-temperature compression molding via an optimized process is adopted to both evaluate the thermoplastic net-shaping kinetics and tune the specific properties of the alloy. We present processed BMGs and BMG composites of the same composition with improved thermomechanical stability, from which high strength retention at temperatures, compared to the cast glass, by above 100 K higher is registered via dynamic mechanical analysis. ∼100 nm thin surface layers comprised of Ti, Cu, and Zr oxides form at the surface of the alloys, as identified by high-resolution transmission microscopy. Also, ∼4 orders of magnitude lower passivation current density along with ∼2 orders of magnitude lower corrosion current density of the processed glass compared to the values of the as-cast state confirms an extremely high stability in a 0.9 wt% saline environment which can be linked to surface hydrophobicity. Cytocompatibility analysis conducted by seeding human gingival fibroblast cells directly onto the thermoplastically formed Ti40Zr10Cu36Pd14 BMG reveals no adverse effect on cytocompatibility. On the other hand, the formation of a nanoscale oxide layer on the thermoplastically formed samples leads to significantly higher cell attachments on the surface.