People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Najmi, Ziba
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutmentcitations
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutment
- 2023Development, Analytical Characterization, and Bioactivity Evaluation of Boswellia serrata Extract-Layered Double Hydroxide Hybrid Compositescitations
- 2023UV-Cured Bio-Based Acrylated Soybean Oil Scaffold Reinforced with Bioactive Glassescitations
- 2023Ti$_{40}$Zr$_{10}$Cu$_{36}$Pd$_{14}$ bulk metallic glass as oral implant materialcitations
- 2023Functionalization of a chemically treated Ti6Al4V-ELI alloy with nisin for antibacterial purposescitations
- 2023Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant materialcitations
- 2022Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glasscitations
- 2022New-generation biocompatible Ti-based metallic glass ribbons for flexible implantscitations
Places of action
Organizations | Location | People |
---|
article
Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant material
Abstract
The application of highly biocompatible advanced materials leads to fewer complications and more successful medical treatments. This study proposes Ti40Zr10Cu36Pd14 bulk metallic glass (BMG) as an oral implant material and provides insights into its possible processing routes, where high-temperature compression molding via an optimized process is adopted to both evaluate the thermoplastic net-shaping kinetics and tune the specific properties of the alloy. We present processed BMGs and BMG composites of the same composition with improved thermomechanical stability, from which high strength retention at temperatures, compared to the cast glass, by above 100 K higher is registered via dynamic mechanical analysis. ∼100 nm thin surface layers comprised of Ti, Cu, and Zr oxides form at the surface of the alloys, as identified by high-resolution transmission microscopy. Also, ∼4 orders of magnitude lower passivation current density along with ∼2 orders of magnitude lower corrosion current density of the processed glass compared to the values of the as-cast state confirms an extremely high stability in a 0.9 wt% saline environment which can be linked to surface hydrophobicity. Cytocompatibility analysis conducted by seeding human gingival fibroblast cells directly onto the thermoplastically formed Ti40Zr10Cu36Pd14 BMG reveals no adverse effect on cytocompatibility. On the other hand, the formation of a nanoscale oxide layer on the thermoplastically formed samples leads to significantly higher cell attachments on the surface.