People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kashiwar, Ankush
University of Antwerp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Tailoring Mechanical Properties and Shear Band Propagation in ZrCu Metallic Glass Nanolaminates Through Chemical Heterogeneities and Interface Densitycitations
- 2024Tailoring Mechanical Properties and Shear Band Propagation in ZrCu Metallic Glass Nanolaminates Through Chemical Heterogeneities and Interface Densitycitations
- 2024On the role of microstructural defects on precipitation, damage, and healing behavior in a novel Al-0.5Mg2Si alloycitations
- 2024Combining nano-DIC and ACOM TEM to study the ductility enhancement of aluminium films by grain boundary sliding
- 2023Precipitation, damage and healing behaviour in a new healable Al-0.5Mg2Si alloy
- 2023Suppressing hydrogen blistering in a magnesium-rich healable laser powder bed fusion aluminum alloy analyzed by in-situ high resolution techniquescitations
- 2023Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performancecitations
- 2022Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of beta-metastable Ti-12 wt.% Mo alloycitations
- 2022Healing Damage in Friction Stir Processed Mg2Si reinforced Al alloy
- 2022Design, Friction Stir Processing and characterization of a new healable aluminium alloy
- 2022TEM investigations of deformation mechanisms in nanocrystalline metals and multilayered composites
- 2022Optimisation of the Thermoelectric Properties of Fe2VAl Thin Films Obtained by Co-sputtering
- 2022Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy
Places of action
Organizations | Location | People |
---|
article
Suppressing hydrogen blistering in a magnesium-rich healable laser powder bed fusion aluminum alloy analyzed by in-situ high resolution techniques
Abstract
Hydrogen blistering, i.e. precipitation of supersaturated hydrogen at elevated temperatures, increases porosity during heat treatments in 4xxx series Al alloys manufactured by laser powder bed fusion (LPBF), as demonstrated by 3D X-ray nano-imaging in AlSi12. This paper proposes the design of a healable Al alloy to suppress hydrogen blistering and improve the damage management. The strategy consists of solute atoms diffusing towards nano-voids and precipitating on their surface, thereby filling the damage sites. A new healable Al alloy was thus developed and successfully manufactured by LPBF. 3D X-ray nano- imaging evidenced that the addition of Mg in 4xxx series Al alloys suppresses the hydrogen blistering. This is expectedly due to Mg in solid solution which increases the hydrogen solubility in the Al matrix and due to the healing of these hydrogen pores. Moreover, a significant healing of voids smaller than 500 nm diameter is observed. In-situ heating inside transmission electron microscopy pointed out that Al matrix diffuses inside the fractured Mg2Si particles, thereby demonstrating the healing ability of the new alloy. This has opened the doors to development of new healable Al alloys manufactured by LPBF as well as to new post-treatments to tailor mechanical properties and microstructure without hydrogen blistering.