People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shen, Jiajia
University of Exeter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Unleashing the microstructural evolutions during hot deformation of as-cast AlCoCrFeNi$_{2.1}$ eutectic high entropy alloycitations
- 2024Evolution of microstructure and deformation mechanisms in a metastable Fe42Mn28Co10Cr15Si5 high entropy alloycitations
- 2024Unraveling the formation of L1$_{2}$ nano-precipitates within the FCC-phase in AlCoCrFeNi$_{2.1}$ eutectic high entropy alloycitations
- 2024Unleashing the microstructural evolutions during hot deformation of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2024Quantifying efficient shape-shiftingcitations
- 2024Quantifying efficient shape-shifting:Energy barrier measurement in multi-stable lattice metamaterialscitations
- 2024Synergistic effects of Monel 400 filler wire in gas metal arc welding of CoCrFeMnNi high entropy alloycitations
- 2024Evolution of microstructure and deformation mechanisms in a metastable Fe 42 Mn 28 Co 10 Cr 15 Si 5 high entropy alloy:A combined in-situ synchrotron X-ray diffraction and EBSD analysiscitations
- 2024Wire arc additive manufacturing of a high-strength low-alloy steel part: environmental impacts, costs, and mechanical propertiescitations
- 2024Wire arc additive manufacturing of a high-strength low-alloy steel part ; environmental impacts, costs, and mechanical propertiescitations
- 2024Evolution of microstructure and deformation mechanisms in a metastable Fe42Mn28Co10Cr15Si5 high entropy alloy ; A combined in-situ synchrotron X-ray diffraction and EBSD analysiscitations
- 2024Unraveling the formation of L12 nano-precipitates within the FCC-phase in AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloycitations
- 2023Impact of Arc‐Based Welding on the Microstructure Evolution and Mechanical Properties in Newly Developed Cr29.7Co29.7Ni35.4Al4Ti1.2 Multi‐Principal Element Alloycitations
- 2023Wire and arc additive manufacturing of Fe-based shape memory alloys ; Microstructure, mechanical and functional behaviorcitations
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe$_{42}$Mn$_{28}$Co$_{10}$Cr$_{15}$Si$_5$ metastable high entropy alloycitations
- 2023Evolution of microstructure and mechanical properties in gas tungsten arc welded dual-phase Fe$_{50}$Mn$_{30}$Co$_{10}$Cr$_{10}$ high entropy alloycitations
- 2023Microstructures in arc-welded Al$_{10}$Co$_{25}$Cr$_{8}$Fe$_{15}$Ni$_{36}$Ti$_{6}$ and A$l_{10.87}$Co$_{21.74}$Cr$_{21.74}$Cu$_{2.17}$Fe$_{21.74}$Ni$_{21.74}$ multi-principal element alloys: Comparison between experimental data and thermodynamic predictionscitations
- 2023Microstructures in arc-welded Al10Co25Cr8Fe15Ni36Ti6 and Al10.87Co21.74Cr21.74Cu2.17Fe21.74Ni21.74 multi-principal element alloyscitations
- 2023Spinodal Decomposition of B2-phase and Formation of Cr-Rich Nano-precipitates in AlCoCrFeNi2.1 Eutectic High-Entropy Alloycitations
- 2023Wire and arc additive manufacturing of Fe-based shape memory alloys: microstructure, mechanical and functional behaviorcitations
- 2023Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSDcitations
- 2023Wire and arc additive manufacturing of Fe-based shape memory alloyscitations
- 2023Evolution of microstructure and mechanical properties in gas tungsten arc welded dual-phase Fe50Mn30Co10Cr10 high entropy alloycitations
- 2022On the short-time thermal phase-stability of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2022Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steelcitations
- 2022Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steelcitations
- 2022Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)citations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi$_{2.1}$ eutectic high entropy alloycitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material ; Development and characterizationcitations
- 2022Probing the stability landscape of prestressed stayed columns susceptible to mode interactioncitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material: development and characterizationcitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded materialcitations
- 2021In-situ synchrotron X-ray diffraction analysis of the elastic behaviour of martensite and H-phase in a NiTiHf high temperature shape memory alloy fabricated by laser powder bed fusioncitations
- 2021Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloycitations
- 2021In-situ synchrotron X-ray diffraction analysis of the elastic behaviour of martensite and H-phase in a NiTiHf shape memory alloy fabricated by laser powder bed fusioncitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysiscitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysiscitations
- 2020Newton’s method for experimental path-following of nonlinear structures
Places of action
Organizations | Location | People |
---|
article
Wire and arc additive manufacturing of Fe-based shape memory alloys
Abstract
<p>Shape memory alloys (SMA) are a class of smart materials with inherent shape memory and superelastic characteristics. Unlike other SMAs, iron-based SMAs (Fe-SMA) offer cost-effectiveness, weldability, and robust mechanical strength for the construction industry. Thus, applying these promising materials to advanced manufacturing processes is of considerable industrial and academic relevance. This study aims to present a pioneer application of a Fe–Mn–Si–Cr–Ni–V-C SMA to arc-based directed energy deposition additive manufacturing, namely wire and arc additive manufacturing (WAAM), examining the microstructure evolution and mechanical/functional response. The WAAM-fabricated Fe-SMAs presented negligible porosity and high deposition efficiency. Microstructure characterization encompassing electron microscopy and high energy synchrotron X-ray diffraction revealed that the as-deposited material is primarily composed by γ FCC phase with modest amounts of VC, ε and σ phases. Tensile and cyclic testing highlighted the Fe-SMA's excellent mechanical and functional response. Tensile testing revealed a yield strength and fracture stress of 472 and 821 MPa, respectively, with a fracture strain of 26%. After uniaxial tensile loading to fracture, the γ → ε phase transformation was clearly evidenced with post-mortem synchrotron X-ray diffraction analysis. The cyclic stability during 100 load/unloading cycles was also evaluated, showcasing the potential applicability of the fabricated material for structural applications.</p>