People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shanthi Bhavan, Jayesh
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024EBSD characterization of graphene nano sheet reinforced Sn–Ag solder alloy compositescitations
- 2024EBSD characterization of Ag3Sn phase transformation in Sn–Ag lead-free solder alloyscitations
- 2024Small-angle neutron scattering analysis in Sn-Ag Lead-free solder alloyscitations
- 2024Microstructural Evolution and Phase Transformation on Sn–Ag Solder Alloys under High‐Temperature Conditions Focusing on Ag3Sn Phasecitations
- 2023Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applicationscitations
- 2020Experimental Investigations on Impact Toughness and Shear Strength of Novel Lead Free Solder Alloy Sn-1Cu-1Ni-XAg
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applications
Abstract
<p>The need for lightweight materials towards aerospace has increased prominently. This paper focuses on introducing a novel reinforcement mixture of graphene with Al 2014 powder synthesised through ball milling technique. The synthesized powder was utilized as a reinforcement to fabricate Al 2014 based MMCs through squeeze casting technique. The results exhibited that Al 2014 mixture with embedded and interlocked 2D-Gr<sub>np</sub> (2.517 g/cm<sup>3</sup>) matched the density of the matrix metal (2.771 g/cm<sup>3</sup>) that facilitated homogeneous dispersion of 2D-Gr<sub>np</sub> and solved the dispersion problems during stir casting. As a result, AA 2014 embedded with 2D-Gr<sub>np</sub> acted as a carrier to homogeneously disperse combined with the squeeze casting process leading to the production of homogeneously reinforced MMC. This can be considered as a potential fabrication route for the launch vehicle super lightweight fuel tank (SLWT) structural application. The final casted plate after T6 heat treatment with 0.5 wt% 2D-Gr<sub>np</sub> exhibited an improved tensile strength of 361 MPa (52% higher than the monolithic 2014 aluminium alloy) with total elongation of 21% and improved hardness of 119 HRB (45.5 % increase). Furthermore, SEM and TEM results exhibited that squeeze casting led to enhanced interfacial bonding between the 2D-Gr<sub>np</sub> and Al 2014.</p>