People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huizenga, Richard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Achieving superelasticity in additively manufactured Ni-lean NiTi by crystallographic designcitations
- 2021Effect of Sr Addition to a Modified AA3003 on Microstructural and Corrosion Propertiescitations
- 2014High-resolution X-ray diffraction investigation on the evolution of the substructure of individual austenite grains in TRIP steels during tensile deformationcitations
Places of action
Organizations | Location | People |
---|
article
Achieving superelasticity in additively manufactured Ni-lean NiTi by crystallographic design
Abstract
<p>Superelastic metallic materials possessing large recoverable strains are widely used in automotive, aerospace and energy conversion industries. Superelastic materials working at high temperatures and with a wide temperature range are increasingly required for demanding applications. Until recently, high-temperature superelasticity has only been achievable with multicomponent alloys fabricated by complex processes. In this study, a novel framework of multi-scale models enabling texture and microstructure design is proposed for high-performance NiTi fabrication via laser powder bed fusion. Based on the developed framework, a Ni-lean Ni(49.4 at.%)-Ti alloy is, for the first time, endowed with a 4% high-temperature compressive superelasticity. A 001 texture, unfavorable for plastic slip, is created to realize enhanced functionality. The unprecedented superelasticity can be maintained up to 453 K, which is comparable with but has a wider superelastic temperature range (∼110 K) than rare earth alloyed NiTi alloys, previously only realizable with grain refinement, and other complicated post-processing operations. At the same time, its shape memory stability is also improved due to existing textured 100 martensite and intergranular precipitation of Ti<sub>2</sub>NiOx. This discovery reframes the way that we design superior performance NiTi based alloys through directly tailoring crystallographic orientations during additive manufacturing.</p>